‘ | Fuzzy

Burst Round Robin

. Scheduling |

D. Pandy

e C.C.S. University,
Meerut

Vandana
BIT, Meerut

INTRODUCTION

~
W
3 1.
Every scheduling algorithm has its own advantages
and disadvantages. One advantage of round robin is that
~3 starvation is never a problem. It ensures that all
processes in the ready queue share a time slice on the
processor. But the main problem with this algorithm is
that slice value must be correct. A very little value of
the time slice proves to be expensive in terms of context
switching, while a high slice value leads it to a non-
“» preemptive character. In_ addition, round robin

algorithms have low scheduling overhead of O(1);: -

<which. means scheduling the next process takes a
constant time [1,2,3}. RR algorithms nevertheless are

widely used in modern operating systems.

’ Weighted Round Robin (WRR) is a modified
version of round robin policy that assigns some weight
to each process P in proportion to its share of the CPU
time. A process with larger wei ght will effectively geta
larger proportion of quantum than a process with a

b

— smaller weight. WRR provides proportional share by

running all process with the same frequency but
adjusting the size of their time-quanta. The aim of
proportional share schedular is to achieve proportional
fairness for all the processes. Assuring fairness is
essential especially in a dynamic environmefit where
processes get blocked from using CPU. The process
that has lost CPU time while it was blocked has to be
compensated as it will try to gain more shares. Weighted
round robin is simple to implement and schedules
processes in the order O(1). However, it has a relatively
weak proportional fairness guarantee as its service ratio

VS W)

variant of round robin policy

Abstract: This paper designs and develops a . :
which assigns weight to a process in environment on the basis of its
remaining CPU burst after every roun
on fuzzy considerations.
determined dynamically in accorda
philosophy of our approach is; smallert ‘
larger is the size of quantum assigned to it. This facilitates processes with
shorter remaining time to leave the rea
throughput and decreases the average w
enabled to draw advantages of round rob
more cost to be paid in te
reduced through a threshold

dynamic
d. The determination of weights is based
r every round of the process is

Quantum size fo
the assigned weight. The

1ce with
he remaining CPU burst of a process,

dy queue earlier, thus it increases the
aiting time. Proposed method is thus
in policy as well as SJF with little
rms of context switching. Even this cost can be
value decided as minimum guantum SIze.

error can be quite large. Recently researches have been
conducted. on proportional-share analysis to achieve
good proportional fairness in a dynamic environment
while having a low scheduling overhead [4]. Helmy and
Dekdouk [5], in 2007 has given burst round robin as a
proportional share scheduling algorithm. Lottery
scheduling, Group Ratio Round Robin Scheduling and
Virtual Time Round Robin are few other examples of

dynamic considerations.

This paper proposes the development of another
variant of round robin policy which assigns weight to a

process in dynamic envirchment on the basis™f 1is

" remaining CPU requirement after every round. The

determination of weights is based on fuzzy
considerations. Quantum size for every round of the
process is determined dynamically in accordance with
the assigned weight. The philosophy of our approach
is; smaller the remaining CPU burst of a process, larger
is the size of quantum assigned to it. This facilitates
processes with shorter remaining time to leave the ready
queue earlier thus it increases the throughput and
decreases the average waiting time. Proposed method
is thus enabled to draw advantages of round robin policy
as well as SJF with little more cost to be paid in terms
of context switching. Even this cost can be reduced
through a threshold value decided as minimum quantum
size.

The contents of this paper are organized as follows:
In section 2, we describe fuzzy weighting technique.
The algorithm and implementation of the method is
presented in section 3. Section 4 is devoted to the

MR International Journal of Engineering and Technology, Voi. 1, No. 2, December 2009

application of this algorithm to different randomly,
generated data-sets. The results have also been
compared and discussed in this section. Section 5
presents conclusion.

2. FUZZY WEIGHTING TECHNIQUE

In conventional round robin schedulin g, remaining
CPU time requirement for a process keeps on reducing
after completion of every round. Thus any dynamic
weighting policy that assigns weight in proportion to
the current CPU requirement of the process would keep
on changing weights of the processes in every round.
We use a weighting technique that assigns higher weights
to shorter remaining bursts. Thus a process with higher
weight means relatively higher time quanta.

The weight of a process is determined by fuzzy
membership functions. The range of CPU bursts of
n-CPU bound processes is first categorized into several

linguistic classes; such as short CPU-burst, medium’

CPU-burst and high CPU-burst etc. For this purpose
the entire range is divided into as many equal/unequal
parts as are the number of linguistic categories. A fuzzy
set can be defined for CPU burst involving separate
membership functions pertaining to each of these
categories. If g denotes the quantum of round robin
policy and u(x;) x q gives the value of the membership
function for a process P; then M(x;) x q will be the
quantum assigned to the process. The quantum is
calculated for every process after each round based on
the remaining size of the process. Thus quantum size is
dynamically updated after every round by using Fuzzy
%, Inference Engine (FIE). Hence larger proportion of time
' quantum is assigned to the processes with shorter

High CPU-burst : 2a<x; < 3a.

Using b = (a/2), we can define following membership

functions for above categories.

) A O<x<b,
Kshort-burst ¥) = { b+0.2 (b-x) ...(2.2)
————— ,b<x<a.
b
0.8, a< x < (32/2), -
K e dinm. x)=1{ b+0.2 (2b-x) ...(2.3)
medium-burst { . (3a2) < x <2a.
‘ b
0.6, 2a< x < (5a/2),
Hpion x)= b+0.2 (3b-x) ...(2.4)
high-burst [. (5a/2) < x <Ba-

b

Equations (2.2) — (2.4) can be extended to other ranges
of CPU bursts and different number of linguistic
categories. Using these equations, we can define the
weight function W(x) as following:

Hshort-burst (), When the process has short-burst,
W(x)= Emexium-burst (¥), when the process has : ...(2.5)
medium-burst,

Hhigh-burst (x), When the process has high-burst.

Thus if x; . denotes the remaining CPU burst of a
process P; after M round then in (r+1)lh round it is
assigned a quantum of size (W(x;)xq). To reduce the

remaining CPU time requirements to eriable them to leave
ready queue quickly. This aims to achieve better
throughput, waiting time and response time.

To demonstrate the functioning of the fuzzy
weighting technique, we divide the whole CPU burst
range into three equal parts corresponding to three
linguistic categories: short CPU-burst, medium CPU-
burst and high CPU-burst.

1

Let a= — max(x,-:x,-isCPUburstofproccss P;} wi (2.1)
3 I<i<n

Expression (2.1) means that the approxifate maximum
size of the CPU-burst be assumed to be equal to 3a. Let
us categorize the CPU-bursts of all processes into
following classes:

Short CPU-burst :
Medium CPU-burst :

- —— - —a e

cost due to context switching, a threshold.value may
be decided to work as the minimum quantum size.
However, no considerations for the context switching
have been implemented in our work. The calculations
in Fuzzy Burst Round Robin (FBRR) policy can be
reduced by using a fixed defuzzified value for each of
the three membership functions in (2.5). This would

_provide a fixed crisp value of the weights associated

‘with each of the linguistic categories that is, short,
medium and high bursts and thus save computation time

for weight function evaluation for every process
individually.

3. FBRR ALGORITHM AND IMPLEMENTATION
A general sequence of FBRR algorithm is listed below:

Step 1: Define the linguistic categories to be used and
classify CPU bursts according to it.

Step 2: Define membership functions fo
accordance with (2.2)-(2.4
function W(x).

r each type in
) and write the weight

.88

A &’/.,/ ;?j/ ﬁ

“J

Step 3: Pick a process from ready queue in conventional
round robin manner. Weight for this process be
computed using W(x), where x is the remaining time
needed by the process on the processor.

Step 4: Time slices be assigned to it for that particular
round in proportion to the weight and the process is
given time on the processor according ta its time slice.

Step 5: Update the remaining time of the process after
completion of the round and send it to the rear end of
the ready queue, if not zero.

Step 6: Go to Step 3 until ready queue is non-empty..

To understand the FBRR algorithm well, we
observe its implementation through the following
example of ten processes. Processes with their
CPU bursts requirements are listed in Table 1 in FCFS
order.

Table 1. Processes in Ready Queue

Process | P1 | P2| P3| Pa[P5|Psl P7| P8} P9 | P10

CPU 17 | 3815914329 9| 18| 48] 32 22

Step 1: We shall use three linguistic categories for CPU
burst viz. short, medium and large. In Table 1, the
maximum burst is 59 which can be approximated to
60. Hence from (2.1) we get a = 20. The range of CPU
burst is now classified into three linguistic categories
short, medium and large with their limits between 0-20,

20-46—and 40-60; Tespectively.

Step 2: Using (2.2) - (2.4), following membership
functions can be defined for short, medium and large
bursts, respectively:

Thus the weight function can be defined as below:

Ug (x), when the process has short-burst,
W(x) = { W (x), when the process has medium-burst,

Wy, (x), when the process has high-burst.

Step 2 to 6 are worked in Table 2. It presents the quanta
assigned to each process in each round by the fuzzy
weighting technique and demonstrates the
implementation of FBRR scheduling policy by showing
the remaining CPU burst after every round.

4. RESULTS AND DISCUSSIONS

We worked on several randomly generated data
sets (each having 50 processes with CPU bursts ranging
1-100 time-units) in an attempt to compare performance
of fuzzy burst round robin policy with conventional RR
policy in respect of average waiting time and average
response time. Waiting time calculations for RR policy
are based on a fixed quantum of 10 t.u., while FBRR
has used dynamically varying time quantum based on
five rhembership functions, that is, very short, short,
medium, large and very large. These results are
presented in Table 3. It can be observed that in every
data-set, results of average waiting time and average

" response time in FBRR are better than RR. A major
‘advantage that we ga{n in FBRR is that the p.rocesses,
‘that are closer to their completion get bigger portion of
‘the quantum and hence complete relatively faster to leave

the ready queue. This increases the throughput along
with reduction in waiting time. The sacrifice in FBRR

1 " 0<xgl0 in comparison to conventional round robin is in terms
He () = (12-2x)/10 | 10<x<20 of the cost of context switching.
Results of Table 3 in respect of average waiting
[-8 20< x <30 time and average response time for RR and FBRR are
py = | (14-2x)/10 30<x <40 presented in the form of bar-graph in Figure 1 and
. Figure 2 respectively, to facilitate the pictorial
comparison of two scheduling strategies.
-6 40< x <50 p g 8
pp, (x) = (36-.6x)/10 50< x <60
MR International J_aurnal of Engineering and Technology, Vol. 1, No. 2, December 2009 3

Table 2. Demonstration of Implementation of FBRR

“
8 P9 P10 '
Process P P2 P3 P4 PS P6 | P7 P P
48 32 22 p
CPU burst 17 38 59 43 29 9 18
Quantum | Assigned 86 [64 4.2 6 . o 2t : - - }
inround 1 | Remaining | 84 | 316 | 548 37 21 0 | 96 42 44 14 ex/
Assigned 10 7.68 5.04 6.6 8 - 10 6 8 9.2 ‘
Quantum 6.4 438 k
in round 2 [Remaining 0 23.9 49.76 30.4 13 - 0 36 16. .
|
= — - - 6.8 8.72 10 ‘
Quantum Assigned - 8 6 7.92 o 24 _
inround 3 | Remaining = 1592 | 43.76 2248 3.6 - - 29.2 7.68 0 ‘
Quantum | Assigned - 882 | 6- 8 10 = = 8 10 N)
in round 4 Remaining T :71 37.76 14.48 0 - - 212 o ” k
Quantum | -Assigned . 10 6.45 9.1 - - - 8 - - *;'
in round 5 Remaining s 0 31.31 5.38 - - - 132 = - |
Quantum | Assigned - - 7.74 10 - - - 9.36 - - O
in round 6 Remaining - - 23.57 0 - - - 3.84 - - L
Quantum | Assigned - - 8 - 2 - - - 10 & - &
in round 7 o
Remaining - 2 15.57 s : - s 0 - -
Quantum Assigned s - 8.88 < = - - = 0 = &
in round 8§ Remainin A *
g = - 6.69 - - - = S - =
. r‘ P
Quantum Assigned - - 10 - - - - = = s 3
in round 9 Remaining - - 0 - - = = = = = &
Table 3. Comparison of Average Waiting and Response times — j .
= Round Robin Vs. Fuzzy Burst Round Robin
Data Average Waiting - Average Response N zzy. i : 9
Set No. Time Time "L 40 [
Round | ° FBRR Round FBRR . ° :‘2’ :
=) n E.
Robin Robin § 5 ,
1 1346.80 1084.757344 38.437 30.63 § 25
o] R
8 1862.84 | 1484.823750 |- 38.550 27.870 i Ll s b
o
3. 1597.80 12533381 | 136.88 26.487 s 10 S e
2 .
4. 985.220 876.1527 37.206 30.456 s 9
Data set 1 Data set 2 Dataset3 Data set 4
Round Robin Vs. Fuzzy Burst Round Robin Data Sets 9
2000 -
1800 Fig. 2. Comparison of Response times g
o 1600
E 1400 | <
2 :g | To have a little deeper study, it would be better if
§ pony M Round Robin instead of comparing the average waiting time and L
£ OFBRR average response time, we look Into the behaviour of s
2 individual processes towards the waiting and
.202 1 fesponse times. For this purpose we prefer to work on L
a smalle - i i i’ i
Dataset1 Dataset2 Datasel 3 Dataset 4 maller data set of tf:n Processes given in Table 1. We
, Dta S evaluate the waiting time and response time for each of !
the ten processes. In case of RR policy d
Fig. 1. Comparison of Waiting times P ¥ We use a fixe [
4 !

¢

¢ d ¢

quantum of 10 t.u. as in the earlier data-sets.

However, the functioning of FBRR is implemented with Response Time
three linguistic categories viz. short-burst, medium-
burst and large-burst in order to obtain the weights.
Corresponding membership functions are given in
section 3. Keeping the quantum size 10 time units, the
weights have been used to assign dynamically E
varying portion of this quantum to each process in each g
round. Results of waiting times and response times for F
each individual process in the two scheduling policies - i
are presented in Table 4. It can be observed from the z AR
table that waiting time and response time both, have - 0=
smaller values in FBRR for all the processes except bl P:m::s o e
P4, where these are equal.
Fig. 4. RT Behaviour of Individual Processes
Table 4. Waiting and Response times of Individual Processes ’
Process| CPU [Waiting | Waiting | Response | Response 5. CONCLUSIONS
burst Time Time Time Time :
(RR) | (FBRR) | (RR) | (FBRR) In this paper we have proposed a fuzzy weighting
P, 17 89 6360 623 - technique for Found robin schedpling bas?d on processes
CPU burst time. The technique assigns different
Py 38 215 203.56 6.66 6.36 percentages of time quantum according to the remaining
P 59 256 256.00 | 534 534 | burst of the process after every round of its execution.
Py 43 255 235.23 6.93 6.47 This dynamically varying pcrc?ntage' of time qu?ntum
for a process keeps on increasing with shorterning of
Ps 29 194 189.78 . 1 remaining burst. Thus it facilitates a near completing
Ps 9 50 | 332 | 655 4.69 process for faster completion and will work positively
P, 18 136 99.52 8.56 6.53 towards increasing the throughput.
Pg 48 258 | 251.43 6.38 6.24 ‘In fuzzy waiting technique, the value of weight
Py 32 253 202.46 8.90 7.33, function lies between zero and one. Hence it assigns
Fro a5 |~ 323 p—— T — t,umepefeefftage of the quanturg to_every.process after -
i _ it completes a round. The maximum quantum can be
Average 1929 | 170.51 | 7.4376 6.3 100% of the round robin quantum. The whole process

Figures 3 and 4, present individual performances
of the processes for waiting time and response time
respectively for both scheduling strategies.

is easily implementable through a fuzzy engine. Every
process passes through this engine after completion of
each round and gets its fresh time quantum.

FBRR scheduling.algorithm draws the advantages

“Waiting Time -of round robin as well as priority based algorithms.

Normally a scheduling algorithm is tested on three areas:

" fairness, responsiveness and efficiency. Our algorithm

250 is successful in the areas of fairness and responsiveness.

i We have certainly sacrificed in the area of efficiency

o * due to increase in context switches, but the faster finish

g W e of the near completion processes makes up for some
E 100 loss in efficiency.

® REFERENCES

° 1 P2 F3 P4 PE PO 07 P8 PB P10 1. Abeni Luca, Lipari Giuseppe and Buttazza Giorgio,

Process “Constant Bandwidth Vs. Proportional Share

g Resource Allocation”, Proceedings of the IEEE

Fig. 3. WT Behaviour of Individual Processés International Conference of Multimedia Computing

MR International Journal of Engineering and Technology, Vol. 1, No. 2, December 2009 5

and Systems, Florence, Italy, pp 107-111, June
1999.

Chandra A., Adler Micah, Goyal Pawan and
Shenoy Prashant, “Surplus Fair Scheduling: A
Proportional share CPU Scheduling Algorithm for
Symmetric Multiprocessors”, Proceedings of the
4th Symposium on Operating System Design &

Implementation, San Diego CA., pp 45-58, October
2000.

Chaskar Hemant M. and Madhow Upamanyu, “Fair
Scheduling With Tunable Latency: A Round Robin

Approach”, IEEE/ACM Transactions Qp
Networking, Vol. 11, No. 4, August 2003.

Kay J. and Lauder P., “A Fair Share Scheduling”,
CACM, 31(1) pp 44-55, January 1988.

Helmy Tarek and Dekdouk Abdelkader, “Burst
Round Robin as a Proportional Share Scheduling

~ Algorithm”, Proceedings of 4th IEEE-GCC

Conference on Towards Techno-Industrial

Innovations, Behrain, pp 424-428, November,
2007.

a

—

