</

& d 4 ¢

-

Dimple Juneja

M.M. Institute of Computer Technology
and Business Management (MCA)
M.M. University, Mullana (Ambala)

Design and Formal Specifications
of an Intelligent and Adaptive
Multi-agent Interface Using
Z-Specification Language

Abstract: The continuous growth in processing and communication
capabilities led to the massive distributed computational environments e. g
the Internet. These environments are ofien called as open environemnts being
characterized by massive geographical distribution, high dynamics, no
global control, lack of security and high heterogeneity. Building a distributed
application for such an environment is a complex task. Research efforts have
been directed to manage such complexities throught he development of new
paradigms, theories and technologies for distributed applications. Within
this context, software agents have received special attention due to its
Jlexibility and potential use in various fields such as network management,
e-commerce, active networks etc. However, there is a crucial lack concerning
specification and development methodologies for the Multi Agent
Frameworks (MAF). The main intent of this work is to present a generic and
JSormal approach to represent MAF that fits in with prototyping and simulation

S.S. lyengar

Dept. of Computer Science and Engg.
Louisiana State University,

Baton Rouge, Louisiana, USA

i. INTRODUCTION

Agent comimunity [1] is emerging as a new- .
paradigm for modeling various complex but intelligent

distributed systems. The richness of the agent metaphor
is due to its ability to analyze, design and implement
systems based upon the central notions of agents, their
interactions and the environment which they perceive
and in which they act. Although many Multi-Agent
Systems (MAS) [2] have becen designed, there is a
crucial lack concerning specification and development
methodologies.

To facilitate agent-based applications, a
middleware infrastructure is needed to support mobility,
security, fault tolerance, distributed resource and service
management, and interaction with services. Such
middleware makes it possible for'agents to perform their
tasks, to communicate, to migrate, etc.; .but also
implements security mechanisms to, for example,
sandbox agents to prevent malicious code harm the local
machine, or vice versa, protect an agent from tampering
by a malicious host. -

The current work proposes such a middleware
that facilitates communication between heterogeneous

of homogenous as well as heterogeneous domains.

Keywords: Software agents, homogeneous and heterogeneous domain, multi-
agent frameworks *

domains and it adopts the Z specification language [3]
for two major reasons. First, it provides modularity and

. abstraction and is sufficiently expressive to allow.a

consistent, unified and structured account of a computer

- system and its associated operations. Such structured

specifications enable the description of systems at
different levels of abstraction, with system complexity
being added at successively lower levels. Second, Z
schemas are particularly suitable in squaring the
demands of formal modeling with the need for

implementation by allowing transition between .

specification and program. Thus the approach used for
formal specification is pragmatic. Moreover, Z is gaining
increasing acceptance as a tool within the artificial
intelligenceé community [4,5] and is therefore
appropriate in terms of standards and dissemination
capabilities.

The paper is structured as follows: Section 2
provides an overview of Z describing the basic notations
to representing agents and their autonomy. Section 3
targets towards the work of distinguished researchers
highlighting the need for formal specification methods.
Section 4 presents the main intent of this paper i.e.
proposes an agent-based middleware and its formal

MR International Journal of Engineering and Technology, Vol. 1, No. 2, December 2009 7

_‘environment.

N e NN D0 N M D O e

specification that can be used both as the basis ofap
implementation, and also as a precise but general
framework not only for exiting homogenous and
heterogeneous domains but also for further research.

2. Z-SPECIFICATION LANGUAGE

The Z formal specification language is grounded
thematics and based on typed set theory and first-
order logic [6]. It can model problems or systems as
sets, relations and functions [7]). A Z specification can
contain global variables, components of schemas, and
local variables. Schemas group variables, restricting their
values, and describing their static and dynamic aspects.
The static aspects include two sides, namely the states
occupied, and the in-variant relationship that are
maintained as the system moves from one state to
another state [8]. The dynamic aspects include three
facets, namely the possible operations, the relationship
between their in-puts and outputs, and the changes of
the states. Morever, each schema has a declaration (or
signature) part and a predicate part. A declaration
declares or imports a set of variables. A predicate part
specifies the relationships between values of variables.
A framework to be specified is usually structured into
four parts namely, environment, objects, agents and
autonomous agents [9]. A formal model initially
describes the environment and then, through increasingly
detailed description, defines objects, agents and

autonomous agents to provide an account of a general
multi-agent system.

in ma

Table 1. Components of Formal Specification in Z

Component Definition

Environment Abstract description of the world, simply a
collection of attributes -

Object Cluster of the attributes in the environment
with defined capabilities i.e. action primitives
which can be performed by the object leading
to change in the state of that environment.

Agent An object with goals i.e. greater
functionality over objects

Autonomous.| Self-motjvated agents, follow their own

Agent agendas

Considering the basic notion of Z-specification
language, it is evident that the language is suitable for .
formally specifying a multiagent interface in a distributed
The significant property that Z
specification language allows a structured specification
to be written by describing a system at ts highest level

8

e T, R

- Kacem and Kacem [1

of abstraction with further complexity .belng added a¢
each successive lower level of abs-tractlon. has formeq
the basis of this work. The upcoming section presents
a survey of literature review in the related field a.nd the
formal model of the proposed work appears in the
subsequent sections.

3. RELATED WORK

A middleware is an interface or software that
consists of a set of enabling services that allow multiple
processes running on one or more machines to interact
across network. It is essential for cli_ent/serVer
applications and also for commgjnlca'tlor.l across
heterogeneous platforms. This section highlights the
work of eminent researchers in the related field of agent
technologies and formal specification metho.ds. In fact,
this section justifies the need of formal sp.emﬁcat_ior} of
agent based middleware by analyzmg.exnsfmg
middleware designs and their formal specifications
which have made an attempt to resolve various issues
pertaining to open environments.

Authors [10] emphasizes that the specification
process must provide the underlying rationale for the
system under development and also shall guide
subsequent design, implementation and verification
phases. However, their work further identifies the issue
that although there exists a variety of specification
formalisms in the multi-agent environments however,
such formalisms put the emphasis-on the former rofe
and do not provide a basis to fulfill the later.

~ Work in [11] states that.the exiting methods are
abstract and unrelated to concrete computational models.
Authors in [12] made a good attempt to bridge the gap
between the abstract and the concrete level by providing
the system specification using a prototyping process.
Carvalho et.al [13] proposed a method for open system
infrastructure development considering risk analysis
concepts to provide a structured way to specify,
implement, monitor and maintain systems requirements
however the authors failed to provide a conceptual
framework to aid the assessment of existing alternatives.

ap between multi-agent formal

proposed, which adopt

(s Object-Oriented Petri nets but
failed to incorporate

learning ability of MAS. The
ted formalization and prototype

iterature on several technical areas.
6] made a good attempt by formally

/

A

AN

£

’

335,

.

;oL

.Y y
2.

-

FORARRARARAENNNNE

7

'i‘ask Agents (TA)

SPeC.lfying MAS to provide a more concrete
specification using CSP-Z. Miller and McBurney [17]
provfzd the suitability of several TCOZ constructs in
specifying multi-agent systems however their work
shows no concern to undesirable behaviors.

A critical look at the available literature highlights
the“fact that there have been attempts to design agent-
based middleware for homogeneous as well as
heterogeneous domains very few researchers have
targeted towards the formal but generic specification

of multiagent frameworks that fits into prototyping and

simulation oriented processes.

4. THEPROPOSEDAGENT-BASED
MIDDLEWARE

Thekey to all application in open and heterogeneous
environments is the middleware architecture which uses a
smart intermediary between traditional servers and
heterogeneous clients. The fundamental driver for the
proposed architecture is the inability of server to handle
the incredible variation in software, hardware and
networking capabilities of agents where agents are codes
that -are autonomous in the sense that they may
migrate when it is necessary and to where they need. The
upcoming section presents the high level view of
proposed middleware and z-specification of all participating
agents.

A. High Level View and Ecology of Agents in Proposed
Middleware

Primarily, the proposed agent-based middleware
comprises of six agents namely user agent, interface
agents, Server Agent, Registry Agent, Sociological Agent
and a finite number of task agents. Each agent is possessed
with a set of capabilities that limits its contribution in
achieving a goal but making it better domain oriented and
thus increasing its efficiency. The domain set of capabilities
of each agent is listed in table 2.

It may be noted that each individual agent may
achieve a goal first through the appropriate use of its own
capabilities and second through the successful exploitation
of the capabilities of others. In both the cases, however
an agent must be able to recognize existing relationships
between other agents in order that it can successfully
perform the relevant task either within the social constraints
of the current situation or by altering those relationships
without inadvertently and deleteriously affecting its own
relationship with others. The high level view of the
proposed middleware is shown in Figure 1 and is explained
as follows:

1. The user agent gathers the information such as input
message or goals to be achieved, host id and
destination id from the user and forwards the
complete set to interface agent.

Table 2. Agents and Their Responsibilities

Agent . 'Responsibilities

User Agent (UA)

UA provides an interface between user and Interface Agent, scmantiéally enhances the user-input adds
ontological terms, and requests a search to be performed.

Interface Agent (IA)

destination.

An Agent that reccives all authenticates UA and incoming messages, acts as mediator between UA and server
agent, convert requests to standard formal, analyses requests, Generate messageid, Output messages to

Server Agent (OA)

Takes commands from IA and time stamp each goal in the order of their arrival and contacts registry agent for
a particular task agent to adopt the goal and perform the task.

Registry Agent (RA)

provided by task agents.

Keep track of all agents that advertise their capabilities. It provides a unique id to all registered agents. Return
the id of task agent that will actually serve the purpose but in case, no ideal task agent is being registered with
RA, RA returns id of sociological agent that has the special ability to perform composition of services

Sociological Agent (SA)

Combines services provided by various task agents to provide the service close to the request. It increases the
probability of success of providing service if not accurate but relevant and close to user’s request. The new |
service composed gets itself registered in the name of new TA with RA and is given a unique id.

each other via CA.

Lowest Level Agents that actually provide the service requested. These can coordinate and cooperate with

MR International Journal of' Engineering and Technology, Vol. 1, No. 2, December 2009

. e vrgmew e am st e o e o oy 5+ o4 =

10

Interface agent gets activated automatically and
immcdiétely calls the authentication module to
authenticate user agent. In case, there are no goals
pending, all agents remain in sleep state. This would
lead to efficient resource utilization. If authenticated,
converts the message to standard RDG format and
generates a goal id. From this point on, the input
message is treated as a new goal to be achieved. The
goal is then forwarded to server agent for further

processing. The specification for interface agent is
depicted in Figure 2.

Now, the state of Server agent changes from sleep
to active and it adopts the goal and in turn maps the
same to the store. The store contains the set of beliefs

i.e. the direct achievable goals in the form of

knowledge base. This mapping is successful, it
releases the goal to interface agent else forwards the
goal to registry agent. The server agent is now free
to process any other pending new goals, However,

’_\\

ifno allgoalsachieved and server agent state changes

to sleep. Figure 3 presents the formal Specificatiop
of server agent.

Registry agent registers the task agent along with,
their defined capabilities, therefore it looks for the
task agent with a similar capability. The state of the
goal changes from new goal to existing goal. If the
existing goal matches either exactly or can be plugged
into the capabilities of and\ of the already existing
task agents, the task is performed and task agent
returns the result to destination id directly. However,
if neither a matching capability is found nor an agent
is free to take up the task, registry agent invokes
sociological agent as it is possessed with com position
abilities. Formal specification of registry agent and

task agent is given in Figure 4 and Figure 5
respectively.

Sociological agent, checks the temporary log for
the happening frequency and the priority of existing

l User Agent |

y

Interface Agent

Input mesage ();
Authenticate (UA)
. Convert_to_standard_format ();
Generate_messageid ();
Output messages (destination id);

A

f

Server Agent

Adopt_goals ();
Time_stamp (ts);
Release_Goals (destination id);

Goal Adoption : Store

|

- '{'

Registry Agent

Agents Registered with their
defined capabilities

ScnsefromEnvironment();
" Knowledgebase;
. EvcntbyAnothcrAgent();
Sleep (); -

|

Composition Agent

Adopt_goals ();
ComposeNewCapability ();
ComposeNewAgent ();
ReturnNewComposition ();

Task Agents

Adopt_goals ();
Perform_task ();
Release_goals (destination id);

. Fig. 1. Proposcd Agent-based Middleware

L e v & R ——— i

' — = et g e & e

AN A

/

T T ey e e e

]

L

—

~

7

7.

-
r

4

o A

I

" ST

bid

7.

EXEEEEENE

/

IntecfaceAgentPerception Registry Agent Perception

Inputmessage, ouipulimessage: message Interfaceagent, Severagent, SocialogicalAgent, taskagent: RegisteredAgents
Useragent, Serveragent: Agent InternalExecutableCapability, ExternalExecutableCapability Capabilities
Interfaceagentadoptsgoals, Interfaceagentfowardsgoal, Severagentadoptsgoal RegisterNewCapability, RegisterNewAgent, RetumDesiredTaskAgentld, |

:;la‘l;oalmhi"ed' Eventbyuseragent, Serveragentrel goals: Envirc t RetumnCompositionagentld : Environment
: Goals

| Activate, sleep: Action

Activate, sleep —Action

RegisteredAgents = { } IntenalExecutableCapability = {}

V im: Inputmessage: sa: e " i)
B65 sa: severagent; oa: useragent; as action V' nc:NewCapability, ra:RegisteredAgents; env, Environment; as: Action |

Eventbyuseragent ()
=V eav: Environment; as: Action | env € dom RegisterNewCapability |

as = Activate; = ra:Capabilities U ra.nc e ra.capabilities v ra.Capabilities N ra.nc={)

=> as = Activate

3 ing: interfaceagentadoptsgoals | ¥ na:NewAgent; env: Environment; as: Action |
if iaag. authenticate(ua)=True env e dom RegisterNewAgent |
iaag.goal € im.goal | Snaunemn
= as =sleep

iaag.gcncralcgoalid(ing.gml)

v ene Erviommont; s Aucion | Fig. 4. Registry Agent Perception

env € dom Interfaceagentforwardsgoal « as e dom(Severagentadoptsgoal)
V env. Environment; as: Action l

env € dom Allgoalsachived = as=sleep; Task Agent Perception

ActivationbyRegistry Agent,ActivationbySocialogicalAgent, Sleep: Action

- . | Taskagentadoptsgoals, Taskagentrel goals, Allgoalsachieved: Environment
|V om: outputmessage, sa: severagent; ua: useragent, as: action e €

Eventbyseveragent = { } Vv as: Action |
= V env: Environment; as: Action | = as=ActivationbyRegistryAgent # {} v ActivationbySociologicalAgent # {) -

as = Activate; v

h 1

3 sarg: scvmgcmreleasegoak “ iaag: interfaceagentadoptsgoals | s

U sensefromenvirc tactions=perceivingactions;

=~ . - 0 £ : 4. g ey |
ventby N sensefromenvirc tions=(};

if iaag.authenticate (sa)=True .
. ’ dom taskadoptsgoals={Store};
iaag.goal € sarg.goal
i V' env.Environment; as: Action |
inag releasegoalid (iaag.goal)

env € domtaskadoptgoals * as e dom(taskadoptsgoalsofagents env)
v env: Environment; as: Action |

h

E } tianes
= as=kn Y 2 ons;

env € dom Allgoalsachieved = as=sleep; V evnBnviroaitient: % Acdon.l.
P i 5 as:

env € dom taskadoptgoals « as'e dom(task: fromenvirc env)

Fig. 2. An Interface Agent Perception
= s Py . tactions;

V env.Environment; as: Action |
Sever Agent Perception = i ' ! env € dom taskadoptgoals = {} + as € dom(Allgoalsachived env)

sa: serveragent = as=sieep;

. existinggoal, newgoal: Goals
Sever d I, severagentreleasegoals, Allgoalsachieved : Environment Fig. 5. Task Agent Perception

b L

Activate,sleep —» Action

goal. If the priority of the goal is high, it composes a
new agent and for all other priority levels it simply
generates a new capability and returns the same to
registry leading to an increase in probability of
achieving all goals and hence making the system more
and more intelligent. The specification of agent
incorporated is given in figure 6.

Y eg: existinggoal, env: Environmeat; as; Action |
3 sa: severagent | eg.goals = {)

V ng newgoal, env: Environment; as Action |

= as = Activate

env € dom

doptsgoals » as € dom (ti ,(sa.ng))‘
= sa.eg U sang € sa.eg

V env. Environment, as: Action I
env € dom Aligoalsachieved » as € dom (serveragentreleasegoals env) V. CONCLUS[ONS AND FUTURE WORK

3 sarg: serveragentrelasagoals * iaag: interfaceagentadoptsgoals | .
bl s aggonl In this work a formal specification for an agent-

= as=slep, . based middleware that work in homogenous as well as

- heterogeneous domains had been proposed. The presented
Fig. 3. A Server Agent Perception .

MR International Journal of Engineering and Technology, Vol. 1, No. 2, December 2009 "

Sociological Agent Perception
Serveragentgoal, taskagentgoal: Goal

DirectAdoption, ChainAdoption, Composition : Goal Adoption
Ac(ivalionbyRegislryAgcn(. Sleep—Action

= as: Action |
as=Activa(ionbyRegislryAgenl

RegisteredAgents={) AlnternalE bleCapabilitys{ }

"Ex(emnlExcculableCapabilily=()

Y ga: GoalAdotption (ga.serveragentgoal € serveragent)

~ (ga.taskagentgoal e taskagent)
if (ga.scwemgenlgoal # ga.taskagentgoal) *
goal & dom (GoalAdoption) (ga.serveragentgoal ~

ga.taskagentgoal)
V sa: Sociological Agent + goal € sa.goal

V ag Activegoal « (dom activegoal ¢ ra.capabilities) ~ (dom existinggoal ¢ Goal)
~ (dom executablegoal ¢ Composition)

V g: Goal, p : plan, env: Envi
V as Action |

nt | (sociolc gicalagent g p env) 2 capabilities

as=sleep

Fig. 6. Sociological Agent

specification identifies a
Initially, the proposed sch
highest level of abstracti
increasing the detail in

emas are being: specified at the
on and then, by incrementally

the specification, the system
complexity has been added at appropriate levels. Most

importantly, the use of Z in such a unique manner has
provided a general mathematical framework within which
different models, and even particular systems, can be
defined and contrasted. In this work, formal definition for

all participating agents allows a variety of different
architectural and design views to be accommaodated within
a single unifying structure. Al that is required in this
specification is a minimal adherence to features of, and
relationships between, the agents described therein. This
work does not specify how the contrb| structures should
function, but instead how the control is being directed.

References

1. M.J. Wooldridge and N.R. Jennings. Intelligentagents:

Theory and practice. The Knolwedge Engineering Review,
10(2): 115-152, 1995.

2 N.J.E. Wijngaards, B.J. Overeinder. M. van Steen, and
F.M.T. Brazier, Supporting: Internetscale multi-agent
system. Data Knowledge Engineering, 41(2-3): 229-245,
2002.

3.

Michael Luck and Mark d’Inverno, “Structuring a Z
Specification to Provide a Formal Framework for
Autonomous Agent System”. In Zum ’95: The Z Formal
Specificatich Notation, J. Bowen and M. Hinchey, (ed.),

Lecture Notes in Computer Science, 967,47-62, Springer-
Verlag, Heidelberg, 1995,

nd characterizes agents only. .

11.

13.

14.

15.

17.

.+ problem. In Springer Verlag. editor,
- 'Intclligence, number 1437 in LNALI, 1998.

I.D. Craig. The formal specification of ELEKTRA,
R.cs‘earch Report RR 261. Department of Compyge,
Science, University of Warwick, 1994.

R. Goodwin, Formalizing properties of agents. Technicy
Report CMU-CS-93-159. Carnegie-Mellon Universiyy,
1993.

Bowen, J.P. (2001): Experience teaching Z witl'l tool and
web support. ACM SIGSOFT Software Engineering Notes,
26(2), 2001, pp. 69-75.

Fangjun Wu,Tong Yi, “Measuring Z Specifications”, ACM
SIGSOFT Software Engineering Notes, September 2004
Volume 29 Number 5.

Spivey, J.M. (1992): The Z notation: a reference manual
(second edition).London: Prentice Hall, 1992.

M. Luck and M. d’Inverno. A formal framework for agency
and autonomy. In Proceedings of the First Internationq]
Conference on Multi-Agent Systems, 1995.

Vincent Hilairel, AbderKoukaml, Pablo Gruerl,and Jeap.-
Piere Miuller, “Formal Speci-cation and Prototyping of
Multi-Agent Systems”. In ESAW *000: Proceedingsof the
First International Workshop on Engineering Societies in
the Agent World, 114-127, Springer-Verlag, 2000.

Mark d’ Inverno, Michael Fisher, Alessio Lo
Michael Wooldridge. Formalisms for multi-agent systems,

In FirstUK WOrkshop on Foundations of Multi-Agent
Systems, 1996.

muscio,

T. Lissajoux, V. Hilaire, A. Koukam, and A. Caminada.
Genetic algorithms as prototyping tools for multi-_agent
systems: Application to the antenna parametersetting

Lecture Note in Asticial

G. Carvalho,R.Paes, R. Choren, and C."Lucena. Towards
aRisk Driven Method for Developing Law Enforcement

October 2004, | = ’

Zhenhua Yu and Yuanli Cai,’

f Object-OrientedPetrinets
Based Architecture Descri

Torrii Murphy and Albert .Esterline,
and Implementation ofa Multi-age

Using Schema Based Reasoning”. Le
Science. ’

“Formal Specification
nt Information System
cture notes in Computer

Ahmed Hadj Kaceml ang N

: 3jla Hadj Kacem, “From Formal
Specification to Mod

el Checking of MAS Using CSP-Z

Miler, T. McBurney, P.: Multi-a
using TCOZ. In MATES (2005

gent system specification
) 216-221.

K 2in g
b

7

Sl

2L

A

73

12

vﬁ‘

/

r

4

r

A

b
‘f/
Vs

PIIPRIIALS

