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1.  INTRODUCTION

The problem of motion control for robotic
manipulators has attracted the attention of many
researchers over the past decade. Two basic facts about
the robot manipulator dynamics make the control
probiem a challenging one. First, the dynamics are
described by 2 set of second order, nonlinear, and
coupled differential equations. Second, the parameters
of the model are partially unknown, due to errors in
modeling, and varying payload[1]. The typical structure
of a robust controller is composed of a nominal part,
similar to a feedback linearization or inverse control law,
and additional terms aimed at dealing with uncertainties,
Almost all kinds of robust control schemes, including
the classical sliding mode control [2], have been
proposed in the field of robotic control during the past
decades. Classical sliding mode controller design
provides a sysiematic approach to the problem of
maintaining stability in the face of modeling imprecision
and uncertainty. Although classical sliding mode control
is 2 powerful scheme for nonlinear systems with
uncertainty, such as robotic manipulators [1,3], this
control scheme has important drawbacks limiting its
practical applicability, such as chattering and large
control authority. Moreover, in order 1o guarantee the
stability of the sliding mode control systems, the
boundary of the uncertainty has to be estimated.
Recently, much research works have been done 1o use
soft-computing methodologies such as artificial neura|
networks in order 10 improve the performance angd
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remedy the problems met in practical implememam,n
of sliding mode controllers [6].

The use of neural network (NN) for calculation of
the equivalent term of a sliding mode controller (SMQ)
is proposed in [7). In [8] two NNs in parallel are yseg
to realize the equivalent control and corrective contro}
terms of an SMC. This scheme is based on the fact tha
if the NN learns the equivalent control, the corrective
term goes to zero and any difference between them is
reflected as a nonzero corrective term. In [9] the gains
of an SMC are accepted as the weights of the NN and
the weights are updated to minimize the defined cost
function. The proposed adaptation scheme is MIT ruk
and there-is no guarantee for convergence and stability.

In this paper, the combination of neural network
and sliding mode control are used for controlling the
robotic manipulator with robust characteristics. The
discontinuous part of the control signals in the classical
sliding mode controllers are substituted by the output
of General Regression Neural Network (GRNN), which

are nonlinear and continuous, to eliminate the chatenng
phenomenon.

2. PRELIMINARIES

A. Model of robotic manipulators

_The dynamic equation of an n-link rigid robotx
Manipulator system can be described by the t‘ollo\\m‘g
second-order nonlinear vector differential equation (0l
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where g,qug ¢ R 0re Joint position, velocity and

acceleration vectors respectively, Mgy e R denotes the

inertln MAEIX, C'(g.4) € R expresses the coriolis and
centrifugal torques, Fgeqye R™"is the unstruetured

ancertainties of the dynamics including friction and other

disturbances, G(g) e R" is the gravity vector and

nl S ar " N
()¢ R™" is the actuator torque vector acting on joints,

It is assumed that a robolic manipulator, as
described in (1), has some known and some unknown

parts, These unknown parts include uncertainty in robot
parameters due to the unknown load,

Thus M(q),C(q,¢) and G(q) respectively, can be
described as

M(q) = M(q)+AM(q)
C(9.9) = C(g,9) + AC(q,§)
G(q) = G(g)+ AG(q) (2)

where A:l(q),é(q,c']),é(q) are the known parts or the

estimated parameters and AM (g),AC(q,¢),AG(g) are the

unknown parts. For the simplification of notations, from
now on we avoid writing the variables in the parentheses
of the above matrices and vectors.

B.  Classical sliding mode controller (SMC)

In the design of SMC for a robotic manipulator,
the control objective is to drive the joint position ¢ to

the desired position g, . So by defining the tracking error
to be in the following form:

e=q-q, 3)
The siding surface can be written as
s=é+Ae (4)

Where A = diag[ Ay, Ay y)  aNd 4is 2
positive constant. The control objective can now be
achieved by choosing the control input so that the sliding
surface satisfies the following sufficient condition:

J
I dy,

2t ' /hlVll

where 1, s a positive constant, L. (5) indicates that
the enerpy of 5 should decay as long as 4 i not zero,
Now 1o set up the control input 4, we can define the
reference states 1o be in the following, forms:

Gp=q~8=q,-Ac
and
Go=G=8=i,-A¢ (6)

The control input u can now be chosen as

u=1i—-As—Ksgn(s) (7)

where i = Mg, + Cq, +G and K = diaglhy,,....,ky....k,,) is
a diagonal positive definite matrix in whichk, s are
positive constants and A4 = diug(ay,.......d;,.....a,| 15 a
diagonal positive definite matrix in whicha, s are also
positive constants, Now, substituting (7) into (1) yields

Ms +(C + A)s = Af = K sgn(s) (8)

where Af =AMgG, + ACq, + AG + F . It has been proven

in [2] that by considering the Lyapunov function
candidate as

V= ;—sTMs (9)
And choosing g such that

kll Zl Af; llmuml ( 1 0)

where| Af; |4 is the boundary of |Af;|, the overall
system is asymptotically stable. Therefore, the decay

of the energy of s, as long as s %0, is guaranteed and
the sufficient condition in (5) is satisfied.

3.  ADAPTIVE SLIDING MODE CONTROL USING
GRNN

There are major disadvantages in designing the
classical SMCs. First, because of the control actions
which are discontinuous across s, there is chattering
in a boundary of the surfaces. Such high-frequency
switching (chattering) might excite unmodeled dynamics
and impose undue wear and tear on the actuators, so
the control law would not be considered acceptable.
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Second, the prior knowledge of the boundary (?f
uncertainty is required in compensators. lfbounda'r)’ 'Sf
unknown, a large value has to be applied to the gain 0I
discontinuous part of control signal and this Ifirgc contro
gain may intensify the chattering on the sliding §urfacc.
In the following section, an adaptive SMC using soft
computing, to avoid the aforementioned problems, has
been proposed. General regression neural r.1etw0rk
(GRNN) is applied to construct the control gain.

Since the chattering is caused by the constant value
of Kk and the discontinuous function sgn(s), let the

control gain K sgn(s) be replaced by a gain g which is
constructed by GRNN, as described in the following

sections. The new control input is then can be written
as

u=u-As-K

(an

where K =[k,,.....k,,....k,]" is an nx1 vector in which

k; is the output of the GRNN.

4. COMPENSATION OF UNCERTAINTIES USING
GENERAL REGRESSION NEURAL NETWORK
(GRNN)

The GRNN paradigm has been proposed [11] as
an alternative to the popular back-propagation training
algorithm for feedforward neural networks. It is closely
related to the probabilistic neural network [12].
Regression can be thought of as the least-mean-squares
estimation of the value of a variable based on available
data. The GRNN is based on the estimation of a
probability density function from observed samples using
Parzen window estimation [13]. It utilizes a probabilistic
model between the independent vector random variable
X with dimension D, and dependent scalar random
variable Y. Assume that x and y are the measured values

for Xand Y variables, respectively. If f(X,y ) represents

the known joint continuous probability density function,
and if is known, the expected value of ¥ given x (the
regression of ¥ on x) can be estimated as

w

J'Yf(x.Y)dy
E[Y |x]= =

I f(x,Y)dy

(12)
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P |
f(x,y)=(2—755+ng‘ﬁ;’<

(13
= "(x- i ( L 12
ol st )
i=1

where x; and y, are the ith training set data, and X,
denotes the vector form of variable x.ﬂA physical
interpretation of the probability estimate f(x, y) is tha
it assigns a sample probability of width ¢ for
sample x; and y;, after that, the probability estimate s
the sum of those sample probabilities. Substituting
Equation (13) into Equation (12), the desired conditional
mean of Y given x, J , can be calculated as

Y(x) = E[Y | x]

. ” (14)
=D iexp(d)l/ Y exp(d;)

i=| i=1

where d'is given by the distance function of the input
space.

Now let us consider each element of the vector K »
namely k;, to be estimated by an individual GRNN. If

the weighted average approach is used to construct the
output of GRNN, then each can be written as

; E[kj exp(d;)] (13)
A
2 exp(d i)
J=1
whered

» the distance function and here can be writte"
as

d;= -[s_\sf)z (16)



In the above expression s is the new input and s, is
the stored input, o is the sptead factor. In equation (15)
k,is the stored output corresponding to s, and k, implies

the estimated value of truek, .

In continuation, an adaptive law is designed to

arantee that can compensate the system uncertaintics.

According to the property of universal approximation, there
exists such that

|8, -k |< & (17)

where /2, is the output of the GRNN and &, can be chosen
as small as possible. A good estimation of &, depends on
the selection of spread factoro .

5, SIMULATION
In this section, the proposed adaptive SMC is used

on a three-link SCARA robot, with parameter matrices
given by [14].

My My 0 (G G2 0
M(g)=| My My 0 |+C(q.q)={Cy Cpn Of
0 0 My 0 0 0
0
G(g)=|0
G,

where

My "n’['"‘;"*’"z “"s)*’n’z(”'z ’2"'1)90‘(‘11)"1’[%""1)
My =My =My =My, =0

M, -I‘I,(%l+m,]cos(q,)_-l,’(inj*-+m,)- My,
Mu":(%‘*%]

Myy =my

G, =41, sin(q,)

Cy) = =g, G (my +2m,)

Ca=-q, Cl[%*"’:)"'cu

Ciy=Cp=Cy=Cy=Cy =Cy =0

Gy = -mg
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In which ¢,,4,.q; are the angle of joints 1, 2 and 3;
my,my,my are the mass of the links 1,2 and 3; 1,1y are

the length of links 1,2 and 3; g is the gravity acceleration.
The system parameters of the SCARA robot are selected:

L, =1.0m; 1, =0.8m; Iy =0.6m
my =1.0kg; m, = 0.8kg; my =0.5kg,
g=98

Important parameters that affect the control
performance of the robotic system are the external

disturbance £, (), and friction term / (q).

External disturbances are selected as:

5sin(21)
4, (1) =| Ssin(2r)
5sin(21)

Friction forces considered in these simulations as
the following: s

124, +0.2sign(é)
£(q) =] 124, +0.2sign(¢;)
124, +0.2sign(q,)

In this simulation the robot manipulator considered
to carry a load of 10kg to 20kg with no prior knowledge
of the weight; using lsecond to 4second of the total
simulation time.

The desired trajectories for the three joint to be
tracked are given:

G (1) = 1+0.1(sin(¢) + sin(2r))
G2 (1) = 1+0.1(cos(2r) + cos(3r))
Gu3(0) =140.1(sin(3r) + sin(4r))

In this simulation the model is estimated by applying
a factor to the corresponding parameter matrices of the
original system in each environment to count uncertainties,
i.e.

M =.9M,C = 8C,G = .85G

The control input u is chosen as (l1)
where A = diag(80,80,80] and A = diag(30,30,30] in (4).
The spread factor of the GRNN is chosen as .8
49




The simulation results are shown in Figs 1100 As
shownin Big. 1, 3 and € shows the tracking of joint nn%:lcs
1o Jand 3 respevtively. The joint angles trek the desired
ruevtones and the propasad control seheme drives the
rodbtie manipulator to its desinad positions, Tracking error
COMRTRES to o as shown in By, 2,4 and 6 respectively
for the three joint angles. The control input generated tor
the three joint angles with the propasad scheme are shown
n B T Sand @ respectively. For comparison purpose
the control effort for the second joint generated with the
classical controller is shown in Fig. 10, which shows a lot
Of chattering in the controller, Hence it has been observed
that chattering problem in the control input is eliminated
With the proposad controller and it also Qives enhanced
robust pertormance under uncertainties as compared to
the classical sliding mode controller.

6. Conclusion

In this paper an adaptive sliding mode controller
using GRNN neural network is proposed for robotic
manipulators. The discontinuous parts of the classical
sliding mode controller are replaced by GRNN neural
networks, which are nonlinear and continuous, to avoid
the chattering. As shown in simulation the proposed
GRNN neural network can compensate the system
uncertainties without any prior knowledge of
uncertainties. The simulation results demonstrate that

the proposed adaptive sliding mode control scheme isa
stable control.
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Fig. 1. Tracking of joint angle 1 with proposed method
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Fig. 3. Tracking of joint angle 2 with proposed method
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Fig. 6. Tracking error for joint 3 with proposed method
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Fig. 7. control input for joint 1 with proposed method

Fig. 10, Control input for joint 2 with classical sliding mode
control, wheh is showing lots of chattering effects
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