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Granular Computing Approach for
Handling Uncertainty in
Optimization Problems

Abstract: Optimization problems got a lot of attention from many researchers;
in real world application, there is always uncertainty in problem specification,
interval numbers, fuzzy numbers, and rough numbers play important roles in
representing uncertain quantities but these heterogeneous types of numbers
are forming a challenge in computation. This paper proposes a Unified
Granular Number (UGN) that we call G- Number to act as a general form for
any uncertain number. G- Number represents higher level of abstract that
hold only common properties of different types of uncertain granular numbers
while ignoring some particular properties which are not necessary to be
considered in such higher abstract level. This paper shows a solution for
Uncertain Traveling Salesman Problem (UTSP) also shows a modification for
Dijkstra’s algorithm to manipulate different uncertain numbers by applying
the idea of G- number; the main benefit of using such a proposed G- number is
the ability to represent all types of uncertain numbers using unified formality
that greatly simplifies arithmetic operations.  The results are compared to the
solutions in crisp cases.
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I. INTRODUCTION

The information that people obtain is usually
uncertain and incomplete. In recent years, the definition
of uncertainty has been emerged from different
perspectives. Young R.C. (1931) and Moore R E. (1979)
proposed the theory of interval set [1], [2]. Zadeh (1965)
proposed fuzzy set theory [3], then in 1975 he introduced
type-2 fuzzy set and even higher types [4]. Pawlak
(1982) proposed the rough set theory [5]. All the
previously sets theories are constructs falling under the
same umbrella of Granular Computing (GrC) for
handling various types of uncertainty. The theory of
granular computing has recently emerged as a coherent
conceptual and algorithmic platform aimed at the
representation and processing of information granules
[6].

Granular computing may be regarded as a label of
theories, methodologies, techniques, and tools that make
use of granules, i.e., groups, classes, or clusters of a
universe, in the process of problem solving [7].
Generally speaking, information granules are collections
of entities that usually originate at the numeric level and
are arranged together due to their similarity, functional

or physical adjacency, indistinguishability, coherency,
or the like [8]. At present, granular computing is more
a theoretical perspective than a coherent set of methods
or principles [9].

Classical approaches for information processing
use exact and precise algorithms that manipulate only
confident data and precise numbers. Intervals, fuzzy
numbers and rough numbers as types of uncertain
granular numbers are very useful forms in representing
uncertain quantities, to solve problems that containing
uncertain data or inexact numbers, however, this gives
us more responsibilities of developing new solutions to
problems which contain such types of uncertain
numbers in their specifications.

II. UNIFIED GRANULAR NUMBER

G- Number is an extension of a regular number in
the sense that it does not refer to one single value but
rather it refers to a connected set of possible values. G-
Number is a quantity whose value is imprecise, rather
than exact as the case with “ordinary” (single-valued)
numbers. G-number X is expressed by three factors
which are: the center value of number x, radius of
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of G-number represents the most common properties
of uncertain granular number which are lower and upper
boundaries, furthermore the weight of number  is also
considered to distinguish among different numbers
within same boundaries [10].

III. TRANSFORMATION TO G-NUMBER

This subsection shows the process of transforming
various types of uncertain numbers such as interval
number, fuzzy number and rough number and also crisp
number to the proposed form of G-Number.

A.   Interval

Any interval number X  =  [a, b] could be
transformed into G- Number form, since  x = 1/2 (a+b)
is a center value of number X,  rx = 1/2 (b - a) is a
radius of number X and A (X) = (b - a): represents the
weight of number X which is its area see figure 1.

Fig. 1: Interval number A = [a, b]

The new formula for equivalent unified granular
number is:

(1/2 (a + b), 1/2 (b - a))
X = G –––––––––––––––––––––

b - a

B.  Fuzzy Number

Any type of fuzzy number X could be
transformed into G- Number form, since X, x is a
center value of number X,  is a radius of number X and
A (X) : represents the weight of number X which is its
area.

The following cases consequently arise:

a) For triangular fuzzy number X, as shown in
Fig. 2, which, it can be denoted by  X = Tri (a, b,
c) with membership function

x - a c - x
μx (x) = max (min –––––, –––––– , 0)

b - a c - b

The new formula for equivalent unified granular
number is:

( )

Fig. 2 : Triangular fuzzy number X

((a + c) / 2, (c - a) / 2)
X = G –––––––––––––––––––––

(c - a) / 2

b) For trapezoidal fuzzy number Y, as shown in
Fig. 3, which can be denoted by:  Y = Trap (a, b,
c, d), with membership function:

x - a c - x
μY (x) = max (min ––––– , 1 , –––––– , 0)

b - a c - b
( )

Fig. 3 : Trapezoidal fuzzy number Y

The new formula for equivalent unified granular
number is:
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((a + d) / 2, (d - a) / 2)
Y = G –––––––––––––––––––––

1/2 ((d - a) + (c - b))

C.  Rough Number

Any type of rough number X = (X, X) = ([c, d],
[a, b]) could be transformed into G- number form such
that: x is a center value of upper approximate X,  is a
radius of upper approximate X and A (X) represents
the weight of number X, in case of rough number there
are two considered lengths which are lower
approximations length L (X) and upper approximations
length L (X), to calculate the weight of number we
suggest the average of these two lengths

A (X) =         (L (X) + L (X)), see figure 4.

The new formula for equivalent unified granular
number is:

1
––
2

Fig. 4: Rough number X = ([c, d], [a, b])

(1/2 (a + b), 1/2 (b - a))
X = G –––––––––––––––––––––

1/2 ((b - a) + (c - d))

D.  Crisp Number

For any crisp number X , it is trivial to recognize
the equivalent unified granular number formula, which
is:

Same formula could be deduced from the
equivalent unified granular number formula for interval
number by setting the upper limit ‘a’ and the lower limit
‘b ’for interval by the same number X. Also this formula
could be deduced from the equivalent unified granular
number formula for any type of fuzzy number by setting
its support by zero, same formula could be deduced
from the equivalent unified granular number formula
for any type of any rough number by setting upper

(X, 0)
X = G –––––– .

0

approximation X and lower approximation X by the same
exact number.

IV. ADDITION OPERATION ON G - NUMBERS

For any two G- numbers                      and

the addition operation is defined as

follows:

(X, rx)
X = G ––––––

A (X)(y, ry)
Y = G ––––––

A (Y

(x + y, rx + ry)
X + Y = G ––––––––––––––

A (X) + A (Y)

To proof this formula, we check it for each type
of uncertain granular number:

A. In case of crisp numbers

rx = A (Y) = 0, ry = A (Y) = 0 so X = G = x

and  Y = G = y

X + Y = G + G = x + y

(x, 0)
–––––

0
(y, 0)
–––––

0

(x, 0)
–––––

0

(y, 0)
–––––

0

(x + y, rx + ry) (x + y, 0)
G ––––––––––––– = G –––––––– = x + y

A (X) + A (Y) 0

B. In case of interval numbers

Suppose X = [a, b] = G such as x = ,

rx = and A (X) = b - a

(x, rx)
–––––
A (X)

a + b
–––––

2
b - a

–––––
2

Suppose Y = [c, d] = G such as y = ,

ry = and A (Y) = d - c

(y, ry)
–––––
A (Y)

c + d
–––––

2
d - c

–––––
2
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X + Y = [a, b] + [c, d] = [a + c, b + d]

Center (X + Y) = 1/2 (a + b + c + d) = 1/2 (a + b) + 1/2
(c + d) = x + y.

rx+y = 1/2 ((b + d) - (a + c)) = 1/2 ((b - a) + (d - c)) =
rx + ry

A (X + Y) = (b + d) - (a + c) = (b - a) + (d - c) = A (X)
+ A (Y)

C. In case of triangular fuzzy numbers

Suppose X = G = Tri (x-rx, b1, x + rx)

and A(X) = rx see Fig. 5.

(x, rx)
––––––
A (X)

Fig. 7: X + Y (triangular fuzzy numbers)

Suppose Y = G = Tri (y - ry, b2, y + ry)

and A(Y) = ry see Fig. 6.

(y, ry)
––––––

A (Y)

Fig. 6: Y = Tri (y - ry, b2, y + ry)

(x, rx)
–––––
A (X)

X + Y = G + G = Tri (x - rx, b1, x +

rx) + Tri (y - ry, b2, y + ry)

= Tri ((x - rx) + (y - ry), b1 + b2, (x + rx) + (y + ry))

= Tri ((x + y) - (rx + ry), b1 + b2, (x + y) + (rx + ry))

= G

A (X + Y) = rx + ry = A (X) + A (Y) as shown in Fig. 7.

(y, ry)
–––––
A (Y)

(x + y, rx + ry)
–––––––––––––

A (X + Y))

Fig. 5: X = Tri (x - rx, b1, x + rx) Suppose X = G = Trap (x - rx, b1, c1,

x + rx) and A (X) = rx + 1/2 (c1 - b1) see Fig. 8.

(r, rx)
––––––
A (X)

D. In case of trapezoidal fuzzy numbers

Fig. 8: X = Trap (x - rx, b1, c1, x + rx)

Suppose Y = G = Trap (y - ry, b2, c2,

y + ry) and A (Y) = ry + 1/2 (c2 - b2) see Fig. 9.

(y, ry)
––––––

A (Y)

x+rx

1

0

x- rx

rx

x

rx

b1

y+ry

1

0

y- ry

ry

y

ry

b2

1

0

( ) ( )
x y

x y r r b1+b2 ( ) ( )
x y

x y r r

rxrx

1

0

x- rx x c1b1 x+ rx
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Fig. 9: Y = Trap (y - ry, b2, c2, y + ry)

(x, rx)
–––––
A (X)

X + Y = G + G = Trap (x - rx, b1, c1,

x + rx) + Trap (y - ry, b2, c2, y + ry)

= Trap ((x - rx) + (y - ry), b1 + b2, c1, c2 (x + rx) +

(y + ry))

= Trap ((x + y) - (rx + ry), b1 + b2, c1, c2, (x + y) +

(rx + ry))

= G

A (X + Y) = rx + ry + 1/2 ((c1 + c2) - (b1 + b2))

= rx + 1/2 (c1 - b1) + ry + 1/2 (c2 - b2)

= A (X) + A (Y) as shown in figure 10.

(y, ry)
–––––
A (Y)

(x + y, rx + ry)
–––––––––––––

A (X + Y))

Fig. 10:  X+Y (trapezoidal fuzzy numbers)

Some types of fuzzy numbers such as Gaussian
fuzzy number, it is suitable to prove the formula
of addition by using alpha-cut method or approximate
each of them to trapezoidal fuzzy number as a general
case.

E. In case of rough number

Suppose that X = (X, X) = ([a1, b1,], [c1, d1] =

G such that: x = 1/2 (d1, + c1), rx = 1/2 (d1 - c1)

and A (X = 1/2 (L (X) + l L (X)) since L (X) =b1 - a1,

L (X) = d1 - c1

Suppose that

Y = (Y, Y) = ([a2, b2], [c2, d2]) = G

such that: y = 1/2 (d2 + c2), r, = 1/2 (d2 - c2)

and A(Y) = 1/2 (L (Y) + L (Y)) since L (Y) = b2 - a2,
L (Y) = d2 - c2

Therefore X + Y = (X + Y, X + Y) = ([a1 + a2, b1 + b2],
[c1 + c2, d1 + d2])

Center (X + Y) = 1/2 (d1 + d2 + c1 + c2) = 1/2 (d1 + c1) +
1/2 (d2 + c2) = x + y

rx+y = 1/2 ((d1 + d2) - (c1 + c2)) = 1/2 (d1 - c1) + 1/2     (d2
- c2) = rx + ry

L (X + Y) = (b1 +b2) - (a1 + a2) = (b1 - a1) + (b2 - a2) =
L (X) + L (Y)

L (X + Y) = (d1 + d2) - (c1 + c2) = (d1 - c1) + (d2 - c2)
= L (X) + L (Y)

A (X + Y) = 1/2 (L (X + Y) + L (X + Y)) = 1/2 (L (X) +
L (Y) + L (X) + L (Y))

= 1/2 (L (X) + L (X)) + 1/2 (L (Y) + L (Y))

= A (X) + A (Y).

(x, rx)
–––––
A (X)

(y, ry)
–––––
A (Y)

V. G – NUMBER BASED SOLUTIONS FOR
OPTIMIZATION PROBLEMS

Traveling Salesman problem (TSP) and Shortest
Path Problem are categorized as optimization problems
which have been studied in operations research and
theoretical computer science [11]. There many
algorithms are introduced to solve such a kind of
problems such as Dijkstra’s algorithm [12], Bellman–
Ford algorithm [13], Floyd–Warshall algorithm [14] and
Johnson’s algorithm [15], ant colony optimization
algorithm [16] and honey- bee mating optimization [17],
some solutions for these two problems are introduced

ryry

1

0
y- ry

y
c2b2 y+ ry
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under fuzziness uncertainty [18], in next subsections
we introduce solutions for these two problems under
various types of uncertainty

A. Uncertain Travelling Salesman Problem (UTSP)

The salesman has to visit all cities and return to
home at the end of journey, given a list of cities and
their pairwise distances, which are different types of
uncertain numbers.

Example: This example shows how G-Numbers
could replace different types of uncertain numbers in
traveling salesman problem. The set of cities is C =
{C1, C2, C3, C4} as shown in figure 11.

Fig. 11: Distance between cities as various uncertain
numbers (UTSP)

D: is the distance function, it can be defined as following:

D (C1, C2) = Tri (0, 1, 2)

D (C2, C3) = Trap (2, 3, 4, 4)

D (C3, C4) = ([1, 3], [0, 3])

D (C1, C4) = [1, 3)

D (C1, C3) = ([1, 2], [0, 3])

D (C2, C4) = [1, 4]

To find the shortest cycle, we-will use the
representation of unified granular number as follows:

Tri (0, 1, 2) = G

Trap (2, 3, 4, 4) ] = G

([1, 3], [0, 3]) = G

[1, 3] = G

(1,1)
–––––

1
(3, 1)
–––––

1.5
(1.5, 1.5)
––––––––

2.5
(2,1)
––––

1

([1, 2], [0,3]) = G

[1, 4] = G

(1.5, 1.5)
––––––––

2
(2.5, 1.5)
––––––––

3

By calculating the lengths of all possible paths then
ranking them according to the value of center point, we
can say the shortest cycle is:

C1 → C2 → C4 → C3 → C1

The lenght of this cycle can be calculated as
follows:

(1, 1) (2.5, 1.5) (1.5, 1.5) (1.5, 1.5) (6.5, 5.5)
G –––– + G ––––––– + G ––––––– + G ––––––– = G –––––––

1 3 2.5 2 8.5

The single value which reflects previous total
distance is : 6.5, which is the same result in case of
crisp number.

B. G-Number Based Dijkstra’s Algorithm

Dijkstra’s algorithm is designed to determine the
shortest routes between the source node and every other
node in the network [12]. In our case the distances
between the nodes are represented by different types
of uncertain numbers such as: interval numbers, fuzzy
numbers, rough numbers and also some of them could
be represented by classical real numbers. These
heterogeneous types of numbers are forming a challenge
in calculation the shortest path. To overcome this
challenge we convert all types of numbers into
G-numbers, and then they could be calculated and ranked
according to their centers values.

G-Number Dijkstra’s algorithm: Let ui be the
shortest distance from source node 1 to node i, and

define Dij = G , 0x ≥  the length of arc (i, j).

The algorithm defines the label for an immediately
succeeding node j as [uj , i] = [ui + Dij , i]. The label
for the starting node is [0, ¯], indicating that the node
has no predecessor.  Node labels in Dijkstra’s algorithm
are of two types: temporary and permanent. A temporary
label is modified if a shorter route to a node can be
found. If no better route can be found, the status of the
temporary label is changed to permanent.

• Step 0:

a) Transform all distances from original forms to
G-number form.

(x, rx)
––––––
A (X)
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b) Label the source node (node 1) with the permanent

label [G     ,–].

c) Set i = l.

• Step 1:

(a) Compute the temporary labels [ui + Dij , i] for
each node j that can be reached from node i,
provided j is not permanently labeled. If node j is
already labeled with [[ui + Dij , i] , k] through
another node k and, if center (ui + Dij ) < center
(uj ) , replace [uj , k]  with [ui + Dij , i].

(b) If all the nodes have permanent labels, stop.
Otherwise, select the label [ur , s] having the
shortest distance (= ur) among all the temporary
labels (break ties arbitrarily). Set i = r and repeat
step i.

Example: The network in figure 12 gives the
permissible routes and their lengths between city 1 (node
1) and four other cities (nodes 2 to 5) as follows:

D12 = Tri (80, 100, 110)

D13 = [25, 35]

D23 = Trap (10, 15, 25, 30)

D34 = (10, [6, 16])

D35 = 60

D42 = [10, 18]

D45 = ([35, 55], [30, 66])

(0,0)
––––

0

Fig. 12: The permissible routes and their lengths between
nodes

There are two distances are represented as fuzzy
numbers, triangular fuzzy number in the distance from
node 1 to node 2, and trapezoidal fuzzy number in the
distance form node 2 to node 3, also there are two
distance are represented as interval numbers in the
distance from node 1 to node 3 and in the distance form
node 4 to node 2, there are two distance are represented
as rough numbers in the distance from node 3 to node
4 and in the distance form node 4 to node 5, and there
is a distance is represented as crisp number from node
3 to node 5. We need to determine the shortest routes
between city 1 and each of the remaining four cities.

Iteration 0:

a) Transform all distances from original forms to
G-number form as follows:

Tri (80, 100, 110) = G

[25, 35] = G

Trap (10, 15, 25, 30) = G

(10, [6, 16]) = G

60 = G

[10, 18] = G

([35, 55], [30, 66]) =

b) Assign the permanent lable [G ,    –] to node
1 see figure 13.

(95, 15)
––––––

15
(30, 5)
––––––

10

(20, 10)
––––––

15

(60, 0)
––––––

0

(11, 5)
––––––

5

(14, 4)
––––––

8
(48, 18)
––––––

28
(0,0)

–––––
0

Fig. 13: Iteration 0



12

Iteration 1:

Nodes 2 and 3 can be reached from (the last
permanently labeled) node 1. Thus, the list of labeled
nodes (temporary and permanent) becomes as presented
in Table 1.

Table 1: Iteration 1

Node Lable Status

1. Permanent

2. Temporary

3. Temporary

(0,0)
[G –––– , –]

0

(0,0) (95, 15) (95, 15)
[G –––– +G –––––– , 1] = [ G –––––– , 1]

0 15 15

(0,0) (30, 5) (30, 5)
[G –––– +G –––––– , 1] = [ G –––––– , 1]

0 10 10

For the two temporary labels [G 1] and

[G, 1], node 3 yields the smaller distance

(u3 = G) see Figure 14. Thus, the status of node

3 is changed to permanent.

(95, 15)
––––––

15(30, 5)
––––––

10
(30, 5)
–––––

10

Fig. 14: Iteration 1

Iteration 2:

Nodes 4 and 5 can be reached from node 3 see
Figure 15, and the list of labeled nodes becomes as
presented in Table 2.

Table 2: Iteration 3

Node Lable Status

1. Permanent

2. Temporary

3. Permanent

4. Temporary

5. Temporary

(0,0)
[G –––– , 1]

0

(30,5) (11, 5) (41, 10)
[G –––– +G –––––– , 3] = [ G –––––– , 3]

10 5 15

(30,0) (60, 0) (90, 5)
[G –––– +G –––––– , 3] = [ G –––––– , 3]

10 0 10

(95, 15)
[G –––––– , 1]

15

(30, 5)
[G –––––– , 1]

10

The status of the temporary label [G , 3]

at node 4 is changed to permanent (u4 = G ).

(41, 10)
––––––

15

(41, 10)
––––––

15

Fig. 15. Iteration 2

Iteration 3:

Nodes 2 and 5 can be reached from node 4. Thus,
the list of labeled nodes is updated as shown in Table 3.

Table 3: Iteration 3

Node Lable Status

1. Permanent

2. Temporary

3. Permanent

4. Temporary

5. Temporary

(0,0)
[G –––– , –]

0

(41,10) (14, 4) (55, 14)
[G ––––– +G –––––– , 4] = [ G –––––– ,4]

15 8 23

(41,10) (48, 18) (89, 28)
[G ––––– +G –––––– , 4] = [ G –––––– , 4]

10 28 43

(30, 5)
[G –––––– , 1]

10

(41, 10)
[G –––––– , 3]

15
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Node 2’s temporary label [G , 1] obtained

in iteration 1 is changed to [G , 4], node 2

yields the smaller distance (u2 = G ) in iteration

3 to indicate that a shorter route has been found through
node 4, the list for iteration 3 shows that the label for
node 2 is now permanent. Also node 5’s temporary label

[G , 3] obtained in iteration 2 is changed to

[G , 4] see Figure 16, node 5 yields the smaller

distance (u5 G =).

(95, 15)
––––––

15

55, 14)
––––––

23

(55, 14)
––––––

23

(90, 5)
––––––

10
(89, 28)
––––––

43
(89, 28)
––––––

43

Fig. 16: Iteration 3

Iteration 4:

The list for iteration 3 shows that the label for
node 2 is now permanent. Only node 3 can be reached
from node 2. However, node 3 has a permanent label
and cannot be relabeled. The new list of labels remains
the same as in iteration 3 except that the label at node 2
is now permanent as illustrated in TABLEIV.

This leaves node 5 as the only temporary label see
Figure 17. Because node 5 does not lead to other nodes,
its status is converted to permanent, and the process
end.

The computations of the algorithm can be carried
out more easily on the network as figures 12, 13, 14,
15, 16 and 17 demonstrate

Table 4 : Iteration 4

Node Lable Status

1. Permanent

2. Temporary

3. Permanent

4. Temporary

5. Temporary

(0,0)
[G –––– , –]

0

(30, 5)
[G –––––– , 1]

10

(41, 10)
[G –––––– , 3]

15

(55, 14)
[G –––––– , 4]

23

(89, 28)
[G –––––– , 4]

43

Fig. 17 :  Iteration 4

The shortest route between nodes 1 and any other
node in the network is determined by starting at the
desired destination node and backtracking through the
nodes using the information given by the permanent
labels. For example, the following sequence determines
the shortest route from node 1 to node 2:

(2) 

→

 [G , 4]  (4) →  [G , 3]  (3) →

[G  , 1] →  (1)

Thus, the desired route is 1 →  3 →  4 →  2 with

a total length of  G  which is around 55, this

result is the same as the one in classical case.

VI. CONCLUSION

Unified granular number or G-number is a general
representation for different types of uncertain numbers.

(55, 14)
––––––

23

(41, 10)
––––––

15

(30, 10)
––––––

15

(55, 14)
––––––

23



14

The main benefit from using G-number in uncertain
optimization problems is providing the ability to
homogenate the manipulation of heterogeneous types
of uncertain numbers via converting each of them into
the new representation of G-number, then the same set
of arithmetic calculations rules can be utilized. It is
worth to mention that, the implemented approaches are
general ones, in which the fuzzy, rough, interval or crisp
classical solutions are considered as special cases. As a
future work we plan to develop a ranking method for
G-number according to its parameters also we will work
for transforming more types of uncertain numbers such
as: vague number, grey number and type-2 fuzzy number
into the general form of G-number.
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