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Deformation in Transversely Isotropic
Thermoelastic Material Without
Energy Dissipation and With Two
Temperature due to Inclined Load

Abstract: The present investigation is concerned with the two dimensional
deformation in a homogeneous, transversely isotropic thermoelastic solids
without energy dissipation and with two temperature as a result of an inclined
load. The inclined load is assumed to be linear combination of normal load and
tangential load. Laplace and Fourier transforms are used to solve the problem.
The components of displacements, stresses and conductive temperature
distribution so obtained in the physical domain are computed numerically. Effect
of two temperature  are depicted graphically on the resulting quantites.
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I. INTRODUCTION

Thermoelasticity is the study of interaction
between deformation and thermal fields. It deals with
dynamical system whose interaction with surroundings
is limited to mechanical work, external forces and heat
exchange. It also comprises the heat conduction, stress
and strain that arise due to flow of heat. Also, the change
of body temperature is caused not only by external and
internal heat sources but by a process of deformation
itself. For this reason, thermoelasticity is to be regarded
as a multi-field discipline, governed by the interaction
of a temperature deformation field. It makes possible to
determine the stresses produced by the temperature field
and to calculate the temperature distribution due to an
action of time dependent forces and heat sources.

Green and Naghdi [5] and [6] postulated a new
concept in generalized thermoelasticity and  proposed
three models which are subsequently referred to as GN-
I, II, and III models. The linearised version of model-I
corresponds to classical Thermoelastic model.  In model
-II, the internal rate of production entropy is taken to
be identically zero implying no dissipation of  thermal

energy . This model admits un-damped thermoelastic
waves in a thermoelastic material and is best known as
theory of  thermoelasticity without energy dissipation.
The principal feature of this theory is in contrast to
classical  thermoelasticity associated with Fourier’s law
of heat conduction, the heat flow does not involve energy
dissipation. This theory permits the transmission of heat
as thermal waves at finite speed. Model-III includes the
previous two models as special cases and admits
dissipation of energy in general. In context of Green
and Naghdi  model many applications have been found.
Chandrasekharaiah and Srinath [1] discussed the
thermoelastic waves without energy dissipation in an
unbounded body with a spherical cavity. Kumar and
Deswal [8] studied the surface wave propagation in a
micropolar thermoelastic medium without energy
dissipation.

Youssef [16] constructed a new theory of
generalized thermoelasticity by taking into account  two-
temperature generalized thermoelasticity theory for a
homogeneous and isotropic body without energy
dissipation. Chen and Gurtin [2], Chen et al.[3] and [4]
have formulated a theory of heat conduction in
deformable bodies which depends upon two distinct
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temperatures, the conductive temperature ϕ and the
thermo dynamical temperature T. For time independent
situations, the difference between these two
temperatures is proportional to the heat supply, and in
absence of heat supply, the two temperatures are
identical. For time dependent problems, the two
temperatures are different, regardless of the presence
of heat supply. The two temperatures T, ϕ and the strain
are found to have representations in the form of a
travelling wave plus a response, which occurs
instantaneously throughout the body. Warren and Chen
[12] investigated the wave propagation in the two
temperature theory of thermoelasticity. Quintanilla [11]
proved some theorems in thermoelasticity with two
temperatures. Youssef AI-Lehaibi [14] and Youssef AI -
Harby [15] investigated various problems on the basis
of two temperature thermoelasticity. Kaushal, Kumar
and Miglani [7] discussed response of frequency domain
in generalized thermoelasticity with two temperatures.
Sharma and Kumar [9-10] discussed elastodynamic
response and interactions of generalised  thermoelastic
diffusion due to inclined load.

In this paper, a general solution has been obtained
in the transformed form using the Laplace and Fourier
transforms to the field equations of a transversely
isotropic thermoelastic without energy dissipation and
with two temperature due to various sources.
Concentrated source have been taken to illustrate the
utility of the approach as an application. Numerical
inversion technique is applied to invert numerically the
transformed solutions. The results in the form of
displacement components, conductive temperature and
stress components have been obtained numerically and
illustrated graphically for particular model.

II. BASIC EQUATIONS

Following H.M.Youssef [16] the constitutive
relations and field equations are:

tij = Cijkl ekl – βij T (1)

Cijkl ekl,j – βijTj + ρFi = püι (2)

Kij ϕ,ij = βij Toëιj+ρCET (3)

Where

T = ϕ – αi,jϕij βij = Cijkl αij

eij = ui,j + uj,i i,j = 1,2,3

Here

Cijkl (Cijkl = Cklij = Cjikl = Cijlk) are elastic
parameters, β ij is the thermal tensor, T is the
temperature, To is the reference temperature, tij are the
components of stress tensor, eki are the components of
strain tensor, ui are the displacement components, ρ is
the density, CE is the specific heat, Kij is the thermal
conductivity, αij are the two temperature parameters,
αij is the coefficient of linear thermal expansion.

Applying the transformation

x′1 = x1cosθ + x2 sinθ, x′2 = -x1 sinθ + x2 cosθ,
x′3 = x3 where θ is the angle of rotation in
x1 - x2 plane (4)

The basic equations reduce to

c11u1,11 + c12u2,21 + c13u3,31 + c66  u1,22 + u2,12  +

c44  u1,33 + u3,13  – β1 ϕ -  a1 ϕ,11 + a2 ϕ,22 +

a3d,33    + ρF1 = ρü1 (5)

c11  u1,12 + u2,22  + c66u2,11 + c44u2,23 +  c13 + c44   u3,32

– β2 ϕ -  a1ϕ,11 + a2ϕ,22 + a3ϕ,33   + ρF2 = ρü2

(6)

  c13 + c44   u1,13 + u2,23  + c44  u3,11 + u3,22  + c33u3,33

– β  ϕ –   a1,ϕ,11 + a2 ϕ,22 + a3ϕ,33    ρF3 = ρü3

(7)

k1ϕ,11 + k2ϕ,22 + k3ϕ,33 = T0  β1ë11 + β2ë22 + β3ë33

+ ρCE   ϕ –   a1 ϕ,11 + a2ϕ,22a3ϕ,33 (8)

δ
δx1

δ
δx2

δ
δx3

In the above equations we use the contracting
subscript notations (1 → 11,2 → 22,3 → 33,5 → 23,4
→ 13,6 → 12) to relate cijkl to cmn.

III. PROBLEM FORMULATION

We consider a homogeneous, transversely isotropic
thermoelastic solid half-space with two temperatures.
We take rectangular Cartesian co-ordinate system (x1,
x2, x3) having origin on the surface  x3 = 0 with x3 axis
pointing vertically downwards into the half-space.
Suppose an inclined load F0,per unit length is acting on
the x2 axis and its inclination with x3 axis is δ.
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We restrict our analysis in two dimensions subject
to plane parallel to x1 - x3 plane. The displacement vector
for two dimensional problems is taken as :

u = (u1, 0, u3) (9)

The basic governing equations (2) and (3) using
(9) and in absence of body forces are given as:

c11u1,11 + c13u3,31 + c44 (u1,33 + u3,13) – β1

{ϕ – (a1ϕ,11 + a3ϕ,33)} = ρü1 (10)

(c13 + c44) u1,13 + c44u3,11 + c33u3,33 – β3

{ϕ – (a1,ϕ,11 + a3ϕ,33)} = ρü3 (11)

k1ϕ,11 + k3ϕ,33 = T0 (β1ë11 + β3ë33) + ρCE {ϕ – (a1ϕ,11 +

a3ϕ,33)} (12)

where β1 = c11α1 + c31α3,        β3 = c31α1 + c33α3

To facilitate the solution, following dimensionless
quantities are introduced:

Fig.1: Inclined load over a thermoelastic solid

x3

δ
δx1

δ
δx3

x′1 = , x′3 = , u′1 = u1, u′3 = u3,

 T′= , t′ = t, t′11 = , t′33 = ,

 t′31= , ϕ′ = , a′1 = , a′3 = (13)

Where C   = and L is a constant of dimension of

length.

Using the dimensionless quantities defined by (13)
into (10) - (12) and after that suppressing the primes
we obtain.

x1

L

x3

L

 ρc

Lβ1T0

 ρc

Lβ1T0

T

T0

t11

β1T0

t33

β1T0

t31

β1T0

ϕ
T0

a1

L

a3

L
c11

ρ

δ2u1

 δx
+ δ1 + δ2 - 1- a1 +a3

= (14)

δ2u1

δx

δ2u3

δx1δx3
[ ]δ2

 δx( )δ2

 δx
δϕ
δx1

δ2u1

δt2

δ4 +δ1 +δ2 -p5 1- a1 +a3

= (15)

δ2u3

 δx

δ2u3

 δx

δ2u1

δx1δx3
[ ]( )δ2

δx1
2

δ2

 δx
δϕ
δx3

δ2u3

δt2

+ p3 – ζ1 – ζ2 =

ζ3 1– a1 + a3 (16)

where

δ2ϕ
 δx

δ2ϕ
 δx

δ2

δt2

δu1

δx1

δ2

δt2

δu3

δx3

[ ]( )δ2

δx

δ2

 δx

δ2ϕ
δt2

δ1 = , δ2 = , δ4 = , = p5 , p3 =

, ζ1 = ,ζ2 = , ζ3 = (17)

Apply Laplace and Fourier transforms defined by

ƒ (x1, x3, s) = ƒ (x1, x3, t) e-st dt

ƒ (ζ, x3, s) = ƒ (x1, x3, s)eiζ,x1dx1 (18)

on equations (14) - (16) and then eliminating u1, u3 and
ϕ we obtain

(P + Q + R +S) (u1, u3, ϕ) = 0 (19)

Where P = δ1 (δ4 ζ3 a3 s2 – δ4 p3 – ζ2 p5 a3 s
2)

Q = (ζ3a3s2 – p3) {(–ξ2 + s2) δ4 – δ1 (b1 ξ2 + s2) + δ    ξ2}

+ δ1δ4 {ξ2 – ζ3s2 – ξ2ζ3 s
2a1} + ζ2s2 {a3 p5 (ξ2 + s2) + δ1

p5 (a1ξ2 + 1)} + ξ2s2 {– δ4 a3 (p5 ζ1 + ζ2 – ζ1)}

R = (1 + a1ξ2) {-(ξ2 + s2) ζ2 p5 s
2 + ξ2 s2 (p5 ζ1 δ2 + ζ2 δ2

–  ζ1 δ4)} + (δ1ξ2 + s2) {ξ2 + s2) (s2 ζ3 a3 –p3) – δ1 (ξ2 –

ζ3s2 – ζ3 s
2 a1 ξ

2) – ξ2
 a3 ζ1s2} + (ξ2 – ζ3s2 – ζ3 s

2 ξ2a1)

{– (ξ2 + s2) δ4 + δ2
2

ξ2}
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S = (δ1 ξ
2 + s2) {(ξ2 + s2) (ξ2 – ζ3s2 – ζ3 s

2 a1 ξ
2) + ξ2

(1+a1 ξ
2) ξ2 ζ1 s2} (20)

The roots of the equation are + λi, i = 1, 2, 3.
Making use of the radiation conditions that u1, u3, ϕ →
0 as x3 → ∞ the solution of the equation (19) may be
written as :

u1 = A1e
–λ1x3 + A2e–λ2x3 + A3e–λ3x3

u3 = d1 A1e–λ1x3 + d2 A2e–λ2x3 + d3 A3e–λ3x3

ϕ = d′1 A1e–λ1x3 + d′2  A2e–λ2x3 + d′3 A3e–λ3x3 (21)

Where

di = i = 1, 2, 3

li = i = 1, 2, 3 (22)

Where P* = iζ {(–ζ1 p5 a3 s
2 + δ2 (ζ3 a3 s

2 – p3)}

Q* = δ2 (ξ2 – ζ3 s
2 – ζ3 s

2 a1 ξ
2) + p5 ζ1 (1 + a1 ξ

2) s2

R* = – ζ2 p5 a3 s
2 + δ4 (ζ3 a3 s

2 – p3)

S* = (ξ2 – ζ3 s
2 – ζ3 s

2 a1 ξ
2) δ4 – (δ1 ξ

2 + s2) (a3 ζ3 s
2 – p3)

+ ζ2 p5 s
2 (1 + a1ξ

2)

T* = – (δ1 ξ2 + s2) (ξ2 – ζ3 s2 – ζ3 s2 a1 ξ2)

P** = (ζ2 δ2 – ζ1 δ4) s2 iζ

Q** = ζ1 s2 (δ1 ξ2 + s2) (23)

IV. BOUNDARY CONDITIONS

We consider a normal line load F1 acting in the
positive x3 axis on the plane boundary x3 = 0 along the
x2 axis and a tangential load F2, per unit length acting at
the origin in the positive x1 axis. The boundary conditions
on the surface x3 = 0 are:

(1) t33 = –F1 ψ1 (x) H (t)

(2) t31 = –F2 ψ2 (x) H (t)

3 = 0 (24)

–λi
3 P* – λi Q*

λ1
4 R* + λ1

2 S* + T*

–λi
2 P** – Q**

λ1
4 R* + λ1

2 S* + T*

δ ϕ
δ x3

Where F1 and F2 are the magnitudes of the forces
applied, ψ1 (x), ψ2 (x) specify the vertical and horizontal
local distribution functions along x1 axis, H (t) is the
Heaviside unit step function.

F1

F2

X1

X3

O

Fig. 2: Normal and tangential loadings

Using the dimensionless quantities defined by (13)
on (24) and then applying Laplace Transform and
Fourier Transform defined by (18) we obtain

F1 ψ1(ξ)
s Δ

F2 ψ2(ξ)
s Δ

F1 ψ1(ξ)
s Δ

F2 ψ2(ξ)
s Δ

F1 ψ1(ξ)
s Δ

F2 ψ2(ξ)
s Δ

F1 ψ1(ξ)
s Δ

F2 ψ2(ξ)
s Δ

c44

ρc1
2

c44

ρc1
2

u1 = (–M11 + M12 –M13) +

(M21 – M22 + M23)

u3 = (–d1M11+d2M12–d3M13) +

(l1M21 – d2 M22 + d3 M23)

ϕ = (–11M11+l2M12– l3M13) +

(h1 M21 – l2 M22 + l3 M23)

t33 = (–h1M11+h2M12–h3M13) +

(h1 M21 – h2 M22 + h3 M23)

Where

M11 = Δ22Δ33 – Δ32Δ23, M12 = Δ21Δ33 – Δ23Δ32,

M13 = Δ21Δ32 – Δ22Δ31, M21 = Δ12Δ33 – Δ13Δ22,

M22 = Δ11Δ33 – Δ13Δ31, M23 = Δ11Δ32 – Δ12Δ31

Δ1i = iξ – diλi – li + liλi
2   i = 1, 2, 3

Δ2i = – λi + iξdi i = 1, 2, 3

Δ3i = λi li i = 1, 2, 3

Δ = Δ11 M11 – Δ12 M12 + Δ13 M13

c31

ρc1
2

c33

ρc1
2

β3

β1

β3

β1T0
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hi = iξ – diλi – li + liλi
2

i = 1, 2, 3

h′i = - λi + iξdi i = 1, 2, 3

Case (i). Concentrated force:

The solution due to concentrated normal force on
the half space is obtained by setting

ψ1 (x) = δ (x) (26)

Applying Laplace and Fourier transform defined
by (18) on (26), we obtain ψ1 (ξ) = 1. Using (24) and
(25) we obtain the components of displacement, stress
and conductive temperature.

u1 = (–M11 + M12 – M13)

u3 = (–d1 M11 + d2 M12 – d3 M13)

ϕ = (–l1 M11 + l2 M12 – l3 M13)

t33 = (–h1 M11 + h2 M12 – h3 M13)

t31 = (–h′1 M11 + h2 M12 – h′3 M13)

Case (ii). Uniformly distributed force:

Solution due to uniformly distributed force applied
on the half space is obtained by setting.

ψ1 (x) = (27)

In equations and using (13), (18), (24) we obtain

ψ1 (ξ) = 2 sin (ξ a)/ξ ξ ≠ 0

using (27), we can obtain components of displacement,
stress and conductive temperature.

Case (iii). Linearly distributed force:

Solution due to linearly distributed force applied
on the half space is obtained by setting

c31

ρc1
2

c33

ρc1
2

β3

β1

β3

β1T0

c44

ρc1
2

c44

ρc1
2

F1
sΔ
F1
sΔ

F1
sΔ

F1
sΔ

F1
sΔ

1 if |x| < a
0 if |x| > a{

[ ]

ψ1 (x) = 1 – if |x| < a

In equations and using (13), (18), (24) we obtain

ψ1 (ξ) = 2 sin (ξ a)/ξ ξ ≠ 0

using (27), we can obtain components of displacement,
stress and conductive temperature.

V.  APPLICATIONS

A. Suppose an inclined load F0, per unit length is
acting on the x2 axis and its inclination with x3
axis is

F1 = F0 cos δ

F2 = F0 sin δ

In this case, we obtain the expressions for
displacements, temperature distribution and stresses in
thermoelastic half space using (25) as

|x|

a{
0 if |x| > a

[ ]

F0 cos δψ1(ξ)
s Δ

F0 sin δψ2(ξ)
s Δ

F0 cos δψ1(ξ)
s Δ

F0 sin δψ2(ξ)
s Δ

F0 cos δψ1(ξ)
s Δ

F0 sin δψ2(ξ)
s Δ

F0 cos δψ1(ξ)
s Δ

F0 sin δψ2(ξ)
s Δ

F0 cos δψ1(ξ)
s Δ

F0 sin δψ2ξ)
s Δ

u1 = (– M11 + M12 – M13) +

(M21 – M22 + M23)

u3 = (– d1 M11 + d2 M12 – d3 M13) +

(d1 M21 – d2 M22 + d3 M23)

ϕ = (– l1 M11 + l2 M12 – l3 M13) +

(l1 M21 – l2 M22 + l3 M23)

t33 = (– h1 M11 + h2 M12 – h3 M13) +

(h1 M21 – h2 M22 + h3 M23)

t31 = (–h′1 M11 + h′2 M12 – h′3 M13) +

(h′1 M21 – h′2 M22 + h′3 M23)
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B. Particular case

In case of isotropic elastic solid, we have

c11 = λ + 2μ = c33, c12 = c13 = λ, c44 = μ

C. Inversion of the Transformation

The transformed stresses and temperature
distribution are functions of ξ, x3 and s the parameters
of Laplace and Fourier transforms and hence are of the
form ƒ (ξ, x3, s). The obtain the solution of the problem
in the physical domain, we first invert the Fourier
transform using

ƒ (x1, x3, s) = e–iξx1 ƒ (ξ, x3, s) dξ, =

| cos (ξ x1) ƒe – isin (xx1) f0 | dξ (51)

Where f0 and fe are respectively the odd and even

parts of ƒ (ξ, x3, s). thus the above expression gives the

Laplace transform ƒ (x1, x3, s) of the function ƒ (x1,

x3, t):

VI. RESULTS AND DISCUSSION

Copper material is chosen for the purpose of
numerical calculation which is transversely isotropic.

c11 = 18.78 × 1010 Kgm–1s–2,

c12 = 8.76 × 1010 Kgm–1s–2,

c13 = 8.0 × 1010 Kgm–1s–2

C33 = 17.2 × 1010 Kgm–1s–2,

c44 = 5.06 × 1010 Kgm–1s–2,

CE = 0.6331 × 103 JKg–1K–1

α1 = 2.98 × 10-5 K-1, α3 = 2.4 × 10-5 K-1,

a = 2.4 × 104 m2 s-2, b = 13 × 105 m5 s-2 Kg-1

ρ = 8.954 × 103 Kgm-3, K1 = 0.433 × 103 Wm-1K-1,

K3 = 0.450 × 103 Wm-1K-1

The values of normal displacement u3, normal force
stress t33, tangential stress t31 for a transversely
isotropic thermoelastic solid at θ = 0°, θ = 45° i.e. at
initial angle, middle angle and extreme angle have been
sudied. The variations of these components due to
impulsive load with distance x and for two temperatures
a=0 and a=.05 have been shown in the Fig. 1 to 4.
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Fig. 9: Variation of normal displacement u3 with distance x
due to Linearly distributed load.
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Fig. 10: Variation of normal  stress component t33
with displacement x
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Fig. 11: Variation of tangential stress component t31
displacement x.
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Fig. 12: Variation of conductive temperatue ö
with displacement x

1. The solid line, solid line iwth centre symbol circle,
solid line with centre symbol triangle respectively
predict the variations at a = 0 and at angle of
inclination θ = 0°, q = 45° and θ.

2. The dash dot dash line, the long dashed line, the
small dashed line respectively predict the variations
at  a = 0.05 and at angle of inclination θ = 0°,
q = 45° and θ.

VII. CONCLUSION

Effect of two temperature have significant impact
on components of normal displacement , normal stress,
tangential stress and conductive temperature. As
disturbance travels through the constituents of the
medium, it suffers sudden changes resulting in an
inconsistent / non uniform pattern of graphs. The
deformation in any part of the medium is useful to
analyse the deformation field around mining tremors
and drilling into the crust. It can also contribute to the
theoretical consideration of the seismic and volcanic
sources. Since it can account for the deformation fields
in the entire volume surrounding the sources region.
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