Total Domination Number of Cartesian Product of Cycles $\mathrm{C}_{\mathrm{m}} \mathrm{C}_{\mathrm{n}}$ For $\mathrm{m}=6,7$

M. Thiagarajan
School of Mathematics Madurai Kamaraj University,
Madurai
thiaggsnet@gmail.com
R. Bhaskaram
School of Mathematics Madurai Kamaraj University, Madurai raman.bhaskaran@gmail.com

Abstract

Let $G=(V, E)$ be a graph. A set of vertices $S \subseteq V$ is called a total dominating set of G if every vertex of G is adjacent to some vertex in S. The total domination number $\gamma_{t}(G)$ of a graph G is the cardinality of a minimum total dominating set. In this paper, we enumerate the method of constructing a minimum total dominating set and thereby determine the total domination number $\gamma_{t}\left(C_{m} \square C_{n}\right)$ for cartesian product of cycles $C_{m} \square C_{n}$ for any n and m $=A M S 6$ and 7.

Subject Classification: 05C69, 05C38
Keywords: Cartesian Product, Total dominating set, Total domination number.

I. INTRODUCTION

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph (i.e. a graph with neither loops nor multiple edges) with the vertex set V and edge set E. We follow Bondy and Murty's book [1] for teminologies and notations. If $u, v \in V$ then the edge joining u and v is denoted by $u v$. Any two vertices $u, v \in V$ are said to be adjacent if $u v \in E$. For a vertex $\mathrm{v} \in \mathrm{V}$, the set of vertices that are adjacent to v is said to be an open neighbourhood of v, denoted by $N(v)$. The closed neighborhood of v , denoted by $\mathrm{N}[\mathrm{v}]=\mathrm{N}(\mathrm{v}) \cup$ $\{v\}$. For a subset S of V, we define the open neighborhood of S as $N(S)=U_{v \in s}(N(v)$. The closed neighbourhood of S is denoted by $\mathrm{N}[\mathrm{S}]$ and is defined as $\mathrm{N}[\mathrm{S}]=\mathrm{S} \cup \mathrm{N}(\mathrm{S})$. A set $\mathrm{D} \subseteq \mathrm{V}$ of vertices in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a dominating set if $\mathrm{N}[\mathrm{S}]=\mathrm{V}$. The domination number $\gamma(\mathrm{G})$ of a grph G is the cardinality of a minimum dominating set in G . The subject $\mathrm{D} \subseteq \mathrm{V}$ is called a total dominating set of G (this concept was introduced by Cockayne et al. in [3]) if $\mathrm{N}(\mathrm{S})=\mathrm{V}$. The total domination number is the cardinality of a minimum total dominating set in G.

In this paper we study the total domination number of cartesian product of cycles. The cartesian product of two graphs G_{1} and G_{2} is defined as the graph $G_{1} \square G_{2}$
with vertex set $\mathrm{V}\left(\mathrm{G}_{1}\right) \times \mathrm{V}\left(\mathrm{G}_{2}\right)$ and $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ $\in E\left(G_{1}, G_{2}\right)$ if either $\left[u_{1}=v_{1}\right.$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[u_{2}=v_{2}\right.$ and $\left.u 1 v 1 \in E(G 1)\right]$. Problems of determining various domination parameters for the cartesian product of graphs were intensively studied by many since Vizing posed the conjucture that "the domination number of the cartesian product of any two graphs is at least as large as the product of their domination number". This conjecture is still open.

Cartesian product of two paths is called a complete grid graphs, where as that of cycles is called a toroidal grid graph. The problem of determining the domination numbers of cartesian products of particular graphs is a difficult one. Domination number of cartesian product of paths were intensively studied ([2] and [5]). Domination number of cycles were determined in [4] and [7]. Total domination number of cartesian product of complete grid graphs were calculated in [5] and [8].

We denote by P_{n}, C_{n} and K_{n} respectively the path, cycle and complete graph on n vertices. For convenient we use $1,2 \ldots$, n to denote the vertices of C_{n}. Thus $\{(i, j): i=1,2, \ldots . ., m$ and $j=1,2, \ldots, n\}$ represent the set of all vertices of $C_{m} \square C_{n}$. For $j \in V\left(C_{n}\right)$, we define the set $\left(C_{m}\right)_{j}=C_{m}\{j\}$ and for $i \in V\left(C_{m}\right)$, $i\left(C_{n}\right)=$
$\{\mathrm{i}\}_{\square} \mathrm{C}_{\mathrm{n}}$. Thus $\left(\mathrm{C}_{\mathrm{m}}\right)_{\mathrm{j}}$ and ${ }_{\mathrm{i}}\left(\mathrm{C}_{\mathrm{n}}\right)$ represent the jth column and ith row of $C_{m} \square C_{n}$ respectively. Our strategy for establishing is as follows:

Given by $\mathrm{C}_{\mathrm{m}} \square \mathrm{C}_{\mathrm{n}}$ can be split in to a primary block Q_{1} which contain $\mathrm{q}(\geq 1)$ number of m_{\square} t blocks (where t is to be determined $1 \leq \mathrm{t} \leq \mathrm{n}$ and $=\left[\frac{\mathrm{n}}{\mathrm{t}}\right]$) and a secondary block Q_{2} a $\mathrm{m}_{\square} \mathrm{r}$ block, where $\mathrm{r}=0,1, \ldots, \mathrm{t}-1$. Each m_{\square} block is called a base block. This base block is constructed by the enumeration process such that the total dominating set formed is a minimum one. We construct total dominating set as such overlapping (i.e. no vertex is totally dominated by more than one vertex) is very less. Another important thing to be noted is when we repeat the pattern of above formed total dominating set in the following base blocks of Q_{1} then the induced subgraph of the resulting total dominating set should contain no isolated vertex.

II. KNOWN RESULTS

In [9], we have obtained the following on the total domination number of $\mathrm{C}_{\mathrm{m}} \square \mathrm{C}_{\mathrm{n}}$ for $\mathrm{m}=1$ to 5 and for any n .

Proposition 2.1 [9] For any $\mathrm{n} \geq 3, \gamma_{\mathrm{t}}\left(\mathrm{K}_{1} \square \mathrm{C}_{\mathrm{n}}\right)=$
$\left\{\begin{array}{l}\frac{\mathrm{n}}{2}+1 \text { if } \mathrm{n} \equiv 2(\bmod 4) \\ \left\lceil\frac{\mathrm{n}}{2}\right\rceil, \text { otherwise. }\end{array}\right.$
Proposition 2.2 [9] For any $n \geq 3, \gamma_{t}\left(\mathrm{P}_{2} \square \mathrm{C}_{\mathrm{n}}\right)=$ $\left\{\begin{array}{l}\frac{2 \mathrm{n}}{3}+1 \text { if } \mathrm{n} \equiv 4(\bmod 6) \\ \left\lceil\frac{2 \mathrm{n}}{3}\right\rceil, \text { otherwise. }\end{array}\right.$

Proposition 2.3 [9] For any $n \geq 3, \gamma_{t}\left(C_{3} \square C_{n}\right)=\left[\frac{4 n}{5}\right]$
Proposition 2.4 [9] For any $n \geq 4, \gamma_{t}\left(C_{4} \square \mathrm{C}_{\mathrm{n}}\right)=$
$\left\{\begin{array}{lr}\mathrm{n}, & \text { if } \mathrm{n} \equiv 0(\bmod 4) \\ \mathrm{n}+1, & \text { if } \mathrm{n} \equiv 1,3(\bmod 4) \\ \mathrm{n}+2, & \text { otherwise. }\end{array}\right.$
Proposition 2.5 [9] For any $\mathrm{n} \geq 5, \gamma_{\mathrm{t}}\left(\mathrm{C}_{5} \square \mathrm{C}_{\mathrm{n}}\right)=$
$\left\{\begin{array}{lr}\left.\frac{4 n}{3}\right\rceil \text { if } n \equiv 1,2,5(\bmod 6) \\ \frac{4 n}{3} & \text { if } n \equiv 0,3(\bmod 6) \\ \left\lfloor\frac{4 n}{3}\right\rfloor & \text { if } n \equiv 4(\bmod 6)\end{array}\right.$

III. MAIN RESULTS

We now determine total domination number of $\mathrm{C}_{\mathrm{m}} \square \mathrm{C}_{\mathrm{n}}$ for any n and $\mathrm{m}=6,7$ as follows:
$\gamma_{\mathrm{t}}\left(\mathrm{C}_{5} \square \mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{lr}{\left[\frac{5 n}{3}\right]} & \text { if } \mathrm{n} \equiv 0,1,2,3(\bmod 6) \\ {\left[\frac{5 n}{3}\right]} & \text { otherwise }\end{array}\right.$
Proof: Let D be a total dominating set for the base block $6 \square \mathrm{t}$ where t is to be determined. Suppose we start with $(1,1)$ in we have to include one vertex among $\{(1,2),(2,1),(1, t),(6,1)$ to retain the characteristic of total domination. Here we include the vertex $(6,1)$. With $\{(1,1),(6,1)\}$ we can totally dominate the vertices $(1,2),(1, t),(2,1),(5,1),(6,2)$ and $(6, t)$ of the base block. We can't include $(3,1)$ and $(4,1)$ in the first column to D , since their inclusion cause overlapping.

In the next step we include $(3,2)$ and $(4,2)$ in our total dominating set. From $\{(1,1),(6,1),(3,2),(4,2)$ we can totally dominate $(1,2),(2,1),(1, \mathrm{t}),(5,1),(6,2)$, $(6, t),(3,1),(3,3),(2,2),(4,1),(4,3)$ and $(5,2)$. Inclusion of any vertex in the third column leads to overlapping so we skip it. From the fourth we have to include $(1,4),(2,4),(5,4)$ and $(6,4)$ to cover the remaining vertices in previous columns. In the next step if we include $(3,6)$ and $(4,6)$ in our total dominating set, we can totally dominate all the vertices of $6 \square 6$. Thus by enumeration process we have determined $6 \square 6$ as our base block with a total dominating set ($(1,4),(1,4)$, $(2,4),(3,2),(3,6),(4,2),(4,6),(5,4),(6,1),(6,4)$ for $\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}$. Hence given any $\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}$ can be split in to a primary block Q_{1} and if necessary a secondary block Q_{2}. The primary block Q_{1} contain $\left[\frac{\mathrm{n}}{6}\right]$ number of $6 \square 6$ (base) blocks and the secondary block Q_{2} contain $\mathrm{r} \square 6$ block, where $\mathrm{r}=1,2,4,5$. The vertices of the primary block Q_{1} is totally dominated by the vertices of the set as shown in Fig. 1.
$S=\{(1,1+6 k),(1,4+6 k),(2,4+6 k),(3,2+6 k),(4,2$ $+6 \mathrm{k}),(3,6+6 \mathrm{k}),(4,6+6 \mathrm{k}),(5,4+6 \mathrm{k}),(6,1+6 \mathrm{k})$, $\left.\frac{6,4+6 \mathrm{k}}{\mathrm{k}}=0,1, \ldots .,\left\lfloor\frac{[\mathrm{n}-1}{6}\right\rfloor\right\}$.

If $\mathrm{n} \equiv 0(\bmod 6)$ then $\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}$ is totally dominated by the set S. Thus $\gamma_{\mathrm{t}}\left(\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}\right) \equiv\left\lceil\frac{5 \mathrm{n}}{3}\right\rceil$. If $\mathrm{n} 1,2,4,5$ $(\bmod 6)$, then primary block Q_{1} is dominated by the set S and secondary block Q_{2} is totally dominated by the set isomorphic to R_{1}, R_{2}, R_{4} and R_{5} respectively as shown in Fig. 2.

When $n \equiv 3(\bmod 6)$ then $C_{6} \square C_{n}$ is split into $\frac{n}{3}$ number of $6 \square 3$ block. Each $6 \square 3$ block is totally dominated by the set isomorphic to R_{3}. Thus $\gamma_{t}\left(C_{6} \square C_{n}\right)$ $=\frac{5 \times n}{3}=\left\lceil\frac{5 n}{3}\right\rceil$. In the case of $n \equiv 1(\bmod 6)$ is split in to (which consist of $\left\lfloor\frac{n}{3}\right\rfloor$ number of $6 \square 6$ blocks) and a secondary block $\mathrm{Q}_{2} \simeq \mathrm{R}_{1}$. We can totally dominate $C_{6} \square C_{n}$ by S and a set isomorphic to R_{1}. Thus we have

Fig. 1: Total dominating set for the primary block Q_{1} of $C_{6} \square C_{n}$

Fig. 2: Total dominating set for the secondary block Q_{2} of $C_{6} \square C_{n}$
$\gamma_{t}\left(C_{6} \square C_{n}\right)=\frac{10(n-1)}{6}+2=\left\lceil\frac{5 n}{3}\right\rceil$. Similarly for $n \equiv 2$ $(\bmod 6)$ we can prove that $\gamma_{t}\left(C_{6} \square C_{n}\right)=\left[\frac{5 n}{3}\right]$. If
$\mathrm{n} \equiv 4(\bmod 6)$ then n columns of $\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}$ is divided into $\left(\frac{\mathrm{n}-4}{4}\right)$ number of $6 \square 6$ blocks (primary blocks Q_{1}) and a $6 \square 4$ block (secondary block Q_{2}). Each $6 \square 6$ (base block) is totally dominated by 10 vertices and $6 \square 4$ is totally dominated by 6 vertices. Thus $\gamma_{t}\left(\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}\right)=\frac{10 \times(\mathrm{n}-4)}{6}$ $+6=\left\lfloor\frac{5 n}{3}\right\rfloor$.

Note: When n is a multiple of 5 then base block of $\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}$ constructed in the above theorem is not a minimum one. Thus we construct another base block for this particular case.

Theorem 3.2 If n is multiple of 5 then $\gamma_{\mathrm{t}}\left(\mathrm{C}_{6} \square \mathrm{C}_{\mathrm{n}}\right)=\frac{8 \mathrm{n}}{5}$

Proof: By enumeration process we find that is $6 \square 5$ is the base block for $C_{6} \square C_{n}$, where n is a multiple of 5 . Each base block $6 \square 5$ is totally dominated by the set $\{(1,1),(3,1),(4,1),(6,1),(2,3)(2,4),(5,3),(5,4)\}$. Thus a given $C_{6} \square C_{n}$ can be split number $\frac{n}{5}$ number of blocks. $6 \square 5$ blocks. And it is totally dominated by the set $S=\{(1,1+5 k),(3,1+5 k),(4,1+5 k),(6,1+5 k)$, $(2,3+5 k)(2,4+5 k),(5,3+5 k),(5,4+5 k) / k=0,1, \ldots$ $\left.\frac{\mathrm{n}}{5}\right\}$

Hence we have $\gamma_{t}\left({ }_{6} \square C_{n}\right)=\frac{8 \mathrm{n}}{5}$.

Theorem 3.3 For any $n \geq 4$, $\gamma_{t}\left(C_{7} \square C_{n}\right)=$
$\left\{\begin{array}{l}\left\lceil\frac{9 n}{5}\right\rceil \quad \text { if } n \equiv 0,4(\bmod 6) \\ \left\lceil\frac{9 n}{5}\right\rceil+1 \text { if } n \equiv 1(\bmod 5) \\ \left\lceil\frac{9(n+1)}{5}\right\rceil \quad \text { otherwise. }\end{array}\right.$

Fig. 3: Total dominating set of $C_{6} \square C_{n}$

Proof: We construct the total dominating set for $\mathrm{C}_{7} \square \mathrm{C}_{\mathrm{n}}$ as follows: By enumeration process we have determined the base block for $\mathrm{C}_{7} \square \mathrm{C}_{\mathrm{n}}$ to be $7 \square 5$ with a total dominating set $\{(1,1),(1,5),(3,2),(3,3),(3,4)$, $(5,1),(5,5),(6,3),(7,3)\}$. Thus given any $C_{7} \square C_{n}$ be split in to a primary block Q_{1} and a secondary block Q_{2}. The primary block Q_{1} contain $\frac{\mathrm{n}}{7}$ number of $7 \square 5$ and Q_{2} contain a $7 \square \mathrm{r}$, where $\mathrm{r}=1$ to 4 . The primary block Q_{1} is totally dominated by the set $\mathrm{S}=\{(1,1+$ $5 \mathrm{k}),(1,5+5 \mathrm{k}),(3,2+5 \mathrm{k}),(3,3+5 \mathrm{k}),(3,4+5 \mathrm{k}),(5,1$ $+5 k),(5,5+5 k),(6,3+5 k),(7,3+5 k) / k=0,1, \ldots$. $\left.\left\lfloor\frac{\mathrm{n}-1}{5}\right\rfloor\right\}$.

Suppose $\mathrm{n} \equiv 0(\bmod 5)$ then there is no secondary region. $\mathrm{C}_{7} \square \mathrm{C}_{\mathrm{n}}$ is totally dominated by S itself. Thus $\gamma_{\mathrm{t}}\left(\mathrm{C}_{7} \square \mathrm{C}_{\mathrm{n}}\right)=\frac{9}{5}$. If $\mathrm{n} \equiv 1(\bmod 5)$, primary region Q_{1} is totally dominated by S , whereas secondary region Q_{2} is totally by the set isomorphic to R_{1}. Thus we have $\gamma_{\mathrm{t}}\left(\mathrm{C}_{7} \square \mathrm{C}_{\mathrm{n}}\right)=9\left(\frac{\mathrm{n}-1}{5}\right)+3=\left\lceil\frac{9 \mathrm{n}}{5}\right\rceil$. Similarly in the case of $\mathrm{n} \equiv 2,3,4$ primary region Q_{1} is totally dominated by S
and that of secondary region Q_{2} is totally dominated by the set isomorphic to R_{2}, R_{3} and R_{4} respectively.

Fig. 5: Total dominating set for the secondary Q_{2} of $C_{7}{ }^{\square} C_{n}$
If $\mathrm{n} \equiv 2(\bmod 5)$ then each base block $7 \square 5$ is totally dominated by nine vertices and secondary block $7 \square 2$ is totally dominated by set isomorphic to R_{2}. Thus we calculate the total domination number for $\mathrm{C}_{7} \square \mathrm{C}_{\mathrm{n}}$ as $\gamma_{\mathrm{t}}\left(\mathrm{C}_{7} \square \mathrm{C}_{\mathrm{n}}\right)=9\left(\frac{\mathrm{n}-1}{5}\right)+6=\left\lceil\frac{9(\mathrm{n}+1)}{5}\right\rceil$. Similarly we can prove for $n \equiv 3(\bmod 5)$. Suppose $n \equiv 4(\bmod 5)$ then primary region of Q_{1} is totally dominated by S and secondary region Q_{2} ($7 \square 4$ block) is done by eight vertices. Hence. we get $\gamma_{t}\left(C_{7} \square C_{n}\right)=\frac{9(n-4)}{5}+8=\left\lceil\frac{9 n}{5}\right\rceil$. This completes the proof.

Fig. 4: Total dominating set for primary block Q_{1} of $C_{7} \square C_{n}$

REFERENCES

[1]. J.A. Bondy and U.S.R. Murty Graph Theory with Applications. Macmillan Press, London (1976).
[2]. T. Chang and E. Clark The domination numbers of the $5 \times n$ and $6 \times n$ grid graphs Journal of Graph Theory, 17 (1993) 81-107.
[3]. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi Total domination in Graphs Networks 10 (1980) 211-219.
[4]. Mohamed H. El-Zahar and Ramy S. Shaheen, On the Domination Number of the Product of Two Cycles, ARS Combinatoria, 84 (2007) 51-64.
[5]. Sylvain Gravier, Total domination numbers of grid graphs Discrete Applied Mathematics , 121 (2002)119-128.
[6]. Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
[7]. Sandi Klavzar and Norbert Seifter, Dominating Cartesian products of cycles Discrete Applied Mathematics, 59 (1995) 129-136.
[8]. A. Klobuar, Total domination numbers of cartesian products Mathematical Communications 9 (2004) 35-44.
[9]. M. Thiagarajan and R. Bhaskaran Total domination number of product of cyclescommunicated.

