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Change Point Method with Weibull
Distribution

Abstract: The assumption of known in-control mean and SD underlies in all
the standard charting methods (Shewart, CUSUM, and EWMA) and change
point approach. The values used are generally not exact parameter values,
but estimates are obtained in this paper. Using estimated parameters, the
ARL behaviour changes randomly from one realization to another, making it
impossible to control run length behaviour of any particular chart. The
unknown – parameter change point formulation methodology for detecting
and diagnosing step changes based on imperfect process knowledge is studied.
It is observed that, despite not requiring specification of the post-change
process parameter values, its performance is never far short of that of the
optimal CUSUM chart which requires this knowledge, and it is far superior
for shifts away from the CUSUM shift for which the CUSUM chart is optimal.
Also, we observe change point methods are designed for step changes that
persist, they are also competitive with the Shewart chart.

Key words: Cumulative Sum Control Charts, Exponentially Weighted Moving
Average Control Charts, Shewart Control Charts, Average Run Length,
Statistical Process Control.
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I. INTRODUCTION

The Statistical Process Control aims to detect and
diagnose situations where the process gone out of
statistical control. This type of problem involves two
aspects namely process and statistical aspects to have
detailed outline of some of its statistical modelling aspects
see Crowder et al [1]. In fact the status of statistical
quality control may be described as one in which the
process readings appear to follow a common statistical
model. One model is that the process is in SQC, the
successive process readings Xi’s are independent and
sampled from the same distribution. When the process
goes out of control, it may behave in different ways. In
general we can have two types of causes, those that
affect single process readings and then disappear, and
the second type of causes or sustainable causes. These
causes will continue until they are identified and
eliminated. In statistical terminology the isolated causes
analogous to an out layer. The Shewart X with an R or
s-chart is an excellent tool for detecting these special
causes, namely isolated or sustainable causes. However
Shewart control char is less effective for detecting small
changes in the process. Standard tools for detecting

sustain changes are the CUSUM and EWMA chart. This
paper focuses on another, less familiar method aimed at
detecting sustained changes is the Change Point
formulation when the process averages follow non
Normal distribution.

II. CHANGE POINT METHOD

At first let us discuss Change Point Method when
the process readings modelled by two Normal
Distributions,

Xi ~ N (μ1, σ  ) for i = 1, 2... ... . n.
(1)

Xi ~ N (μ2, σ  ) for i = τ + 1, ... n.

2
1

2
1

Here the number of observations ‘n’ is fixed in
any traditional statistical settings, but this ‘n’ may
increase unlimitedly in phase – II Statistical Process
Control settings. Here both settings i.e. Phase-I and
Phase-II will be discussed, with context indicating
which of the two applies. In the case of in control
distribution is N (μ1, σ1

2), the readings follows this
distribution up to an epoch τ, the change point, at which

}
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point they shift to another Normal distribution different
in mean i.e. μ1 = μ2, in variability σ1 = σ2 or in both
mean and variance. In change point method process
readings leads to two statistical tasks namely testing
task and estimating task. The testing task is to conform
whether there has indeed being a change. If the change
is there then the task of estimating ô, the time at which
shift occurred. Sometimes we may have to estimate
some or all of the parameters  μ1 , μ2, σ1 and  σ2. In all
discussions [see Hawkins, 2003] we work on change
point has focused on shifts in mean only. i.e. μ1 ≠ μ2 but
μ1 = μ2 = σ, throughout this paper this type of frame
work is used here.

From this change point method we have three
scenarios based on the amount of process knowledge
viz.,

1. All parameters μ1,  μ2, σ1 and σ2 are known exactly
priory.

2. In control parameters μ and σ are known but μ2 is
unknown.

3. All parameters μ1, μ2, σ1 and  σ2 are  unknown.

In this paper, we concentrate on the third scenario
namely all parameters are unknown under varying
distributions.

III. IMPLEMENTATION OF CHANGE POINT
METHOD

The formulas below mentioned indicate that the
Tmax,n values are computationally burdensome. For the
implementation of the method, construct two arrays of
values of

n n

Sn  = Σ Xi and Wn = Σ (Xi - Xn)
2

i=1 i=1

there is no need to store the running mean Xn = ,
but it will be calculated ‘on the fly’. The observation of
the two new table entries can be calculated from the
numerically stable recursions, when a new observation
is added.

Sn = Sn-1 + Xn and Wn = Wn-1 +

Sn
n

The two sample statistic Tjn are calculate for every
possible split point 1< j < n after finding Tmax,n. It is
easy and more covenient to find T2

jn. The variance
explained by a split at point j can be shown to be

[(n - 1) Xn - Sn-1]2

n (n - 1)

(nSj – jSn)2

nj (n - j)

and the analysis of variance identity

Vjn = Wn- Ejn reveals to

The Change Point test is known by comparing h2
n

with maximum of statistics of the allowed j values. If
T2

max,n > h2
n, leading to the signal of a change point,

then it is in significant matter to compute the maximum
likelihood estimators.

(n – 2) EjnT2
jn =

(Wn – Ejn)

μ1 = μ1= and σ2 =
Sj

j,

(Sn – Sj)

n – j

Vjn

n – 2

(the customary variance estimator), using the value ‘j’
leading to the maximum. The estimators are somewhat
biased even though the maximum likelihood estimator
are calculated [3,4]. The maximizing j is that which
maximizes Ejn, so the searching step need only to evaluate
Ejn for each j, making further T2

jn calculation necessary
only for the maximizing Ejn. Thus, while at process
reading number n there are n-1 calculations to be
performed, each involves only about the floating point
operations, so even if n were in the tens of thousands
calculating T2

max,n  would still be a trivial calculation.
The ever-growing storage requirement for the two tables
might be more inconvenient. It is acceptable to restrict
the search for change point to the most recent ‘ù’
instance, if this can be limited along with the size of the
resulting search. It is done only when one must keep a
table of only the ‘ù’ most recent  Sj and Wj values.
Willsky and Jones [1] discussed the ‘window’ approach
which is different from above method, in that
observations more than w time periods into the past are
not lost, since they are summarized in the window’s
leftmost S and W entry. The lost is the ability to split at
these old instants. Appropriate values for the table size
W may be in the 500 to 2000 range. It is very large as
no interesting structure is lost, but small enough to
compute for each new reading to less than 20000
operations.

IV. CHANGE POINT METHOD WITH WEIBULL
DISTRIBUTION

Consider the model with none of the
parameters known; we can test the presence of
change point with another general Likelyhood
ration  test. This test is a two sample t-test between
before shift and after shift of the sequence,
maximised across all possible change points [12].
For a given change point ‘j’ where 1 < j < n-1, let

Ejn =
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Xjn = Σ Xij/j
 be the means of the ‘j’ observations

before shift X*
jn = Σ X1/(n-j)

be the mean of the (n-j) observations after shift. The
residual sum of squares i.e. Vjn is given by

j
j-1

n
i=j+1

j n

Vjn  = Σ (Xi - Xi)
2 + Σ (Xi - X

*
j)

2 (2)

i=1 i=j+1

here we assume that there is a single change point
approach at epoch ‘j’, Xjn and X*

jn are the Maximum

Likelyhood Estimators of μ1, μ2 and  σ2
jn = is

the usual pooled estimator of σ2. A  conventional two
sample t statistic for comparing these two segments
could be

Tjn = (3)

Vjn
n – 2

j (n – j)

n

Xjn – X*
jn

σjn

For a stable process, Tjn follows at t – distribution
with n-2 degrees of freedom. An out of control signal is
obtain as soon as

Tmax,n = Max {|Tjn|, for 1 < j < n – 1} (4)

exceeds some critical value, hn.

Hawkins et al. [2] showed that, for any type I
error, hn can be computed by using the Bonferroni
inequality. They mentioned that the latter is conservative
when a process measurement (n) is large. At same time,
they provide empirical control limits, hn,α for different
type I error, α ,  and various number of process
observations. Also, for large n values (n>1), they
proposed the following approximation formula for
computing hn,α.

where in (.) is the natural log function.

hn,α = hn,α 0.677 + 0.019 1n (α) + (5)[ 1-0.155 1n(α)

n – 6

In the case of general change point formulation in
which either or both of the parameters μ, σ may shift
at the change point τ. Sullivan and Woodall [10] discuss
this formulation and the resultant generalised likely hood
ratio test. It provides a single diagnostic to detect shifts
in either the mean or the variance or in both. This has

the disadvantage of normality assumption. Furthermore,
while bounds, approximations and extreme value results
are known for the hull distribution of Tmax,n, there is
any hardly sample theory for Sullivan and Woodall
statistic. Based on these reasons we will consider for
the change point formulation to mean the formulation
in the third scenario i.e. none of the process parameters
is consider known exactly.

In Phase I, with its static set of data X1,

X2,.......Xn, traditional fixed sample statistical methods
are appropriate. So, for example, it is appropriate to
calculate Tmax,n for the whole data set and test it against
a suitable fractiles of the null distribution of the test
statistic for that value of n. If the analysis indicates a
lack of control in the Phase I data set, more data will be
gathered after process adjustment until a clean data set
is achieved.

Phase II data are the process readings gathered
subsequently unlike the fixed set of Phase I, they are
from a never-ending stream. As each new reading
accrues, the SPC check is re-applied. For this purpose,
fixed significance level control limits are not appropriate:
rather, concern is with the run lengths, both in-and out-
of-control. A convenient summary of the frequency of
false alarms is the in-control average run length (ARL),
which should be large, and self-contained GLR in which
the maximised Likelyhood and the Likelyhood ratio are
used both detection and estimation.

In traditional methods viz., Shewart, CUSUM,
EWMA charts, require a Phase I data set to have
parameter estimates that can be used in the Phase II
calculations. These methods require on to draw a
connectional line below the Phase I data and separate
the estimated data [Phase I] from the SPC data [Phase
II]. On contrast, in change point formulation one does
not assume known parameters and hence does not
require the estimates produced by a Phase I. Once the
preliminaries are complete and the initial process stability
has been achieved, the change point allows to go
seamlessly into SPC in which, at each instant, all
accumulated process readings are analysed and all data
is used to test for the presence of a change point. When
process remains in control, it also provides on ongoing
stream of every improving estimates of the parameters.

The change point model is a schematic approach
in which each new observation Xn is added to the data
set, the change point statistic Tmax,n is calculated for
the sequence X1, X2,.......Xn. If Tmax,n > hn. Where
{h1n} is a suitably chosen sequence of control limits,

]
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then we conclude that there has been a change in mean.
The important point is the choice of the control limits
sequence {h1,n}. The ideal would be a sequence {h1,n},
such that the hazard or alarm rate [the conditional
probability of a false alarm at any ‘n’, given that there
was no previous alarm] was a constant α, as in case
with the Shewart chart. When the hazard rate is constant

the in-control ARL  would  be . This approach was

used by Margavio et al. [9] in the context of an EWMA
chart in context known parameters the false alarm
changes point over time. Margavio et al. [9] derived
control limits sequence that would fix the false alarm
for EWMA chart to a specified value. The present paper
attempts to obtained distribution of Tmax,n.

TABLE 1: CUTOFFS hn, ααααα  FOR SAMPLE SIZE n AND HAZARD RATE ααααα STARTING AT SAMPLE 3

n 0.05 0.02 0.01 0.005 0.002 0.001

3 25.4517 63.65674 127.3213 254.6466 636.6192 1273.239

4 7.648804 12.18613 17.27718 24.46427 38.71047 54.75856

5 5.391949 7.453319 9.4649 11.98376 16.32633 20.60409

6 4.604095 5.951373 7.173182 8.610302 10.9155 13.03367

7 4.219309 5.247417 6.13837 7.146386 8.692542 10.05301

8 3.997061 4.848107 5.563179 6.351018 7.52302 8.523984

9 3.855226 4.594638 5.202189 5.858792 6.814035 7.612264

10 3.758586 4.421439 4.956973 5.527352 6.343208 7.013689

11 3.689662 4.296806 4.780913 5.290654 6.010132 6.593683

12 3.638848 4.203635 4.649243 5.114154 5.763356 6.284337

13 3.600447 4.131928 4.547656 4.978133 5.573976 6.047961

14 3.570882 4.075467 4.467333 4.870557 5.424579 5.862067

15 3.5478 4.030193 4.40256 4.783685 5.304082 5.712457

16 3.529593 3.993347 4.349476 4.712323 5.205113 5.589751

17 3.515129 3.962993 4.305383 4.65286 5.122586 5.487513

18 3.503588 3.937734 4.268344 4.602711 5.052882 5.401188

19 3.494364 3.916538 4.23693 4.559982 4.993362 5.327467

20 3.487002 3.898627 4.210068 4.52325 4.942055 5.263887

22 3.476538 3.870409 4.166892 4.463679 4.858423 5.160113

24 3.470215 3.849692 4.134158 4.417862 4.793551 5.079398

26 3.466777 3.834327 4.108908 4.381917 4.742126 5.01518

28 3.465401 3.822883 4.089178 4.353269 4.700642 4.963144

30 3.465522 3.81438 4.073619 4.33015 4.666698 4.92034

35 3.470065 3.801886 4.047307 4.289134 4.604778 4.841425

In fact obtaining distribution of Tmax,n the sequence
is far from being able to provide distributional theory
sequence. Hence an attempt is made using simulation
to tackle this problem. In fact the change point does
not depend on the parameters estimation from Phase I
so it is possible to star testing for a change point with
the third process reading. Table 1 is obtained by
simulation of 10 million sequence of length 200 using
weibull distribution. This table shows the control limits
for á value of 0.05, 0.02, 0.01, 0.005, 0.002 and 0.001,
corresponding in control ARLs of 20, 50, 100, 200,
500 and 1000 for different ‘n’ values ranging from 3 to
200.

(Table Contd. on next page)

1
α
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40 3.47808 3.797231 4.032486 4.263587 4.564119 4.78858

45 3.487793 3.797093 4.024515 4.247407 4.536458 4.751721

50 3.498296 3.799678 4.02085 4.237231 4.517231 4.725286

60 3.519917 3.809271 4.021035 4.227685 4.494256 4.691687

70 3.541075 3.821638 4.026596 4.226261 4.483276 4.673205

80 3.561185 3.83498 4.03474 4.229106 4.47892 4.663231

90 3.580104 3.848487 4.044119 4.2343 4.478461 4.658384

100 3.59785 3.861779 4.054036 4.24081 4.480391 4.656776

125 3.637614 3.893147 4.07909 4.259533 4.490664 4.660564

150 3.671928 3.921475 4.102962 4.278972 4.504237 4.669669

175 3.701978 3.946974 4.125098 4.297784 4.51868 4.680807

200 3.728651 3.970029 4.145496 4.315569 4.533051 4.692607

n 0.05 0.02 0.01 0.005 0.002 0.001

It can be noted that from table1, as the ‘α’ values
decreases the control limits hn,α decreases sharply
initially, but then stabilizes. Similar type of behaviour
can be observed even with Normal distribution [2].It
may not be reasonable that start testing at the third
observation. However there are cases where the process
shift occurs at third observation. In practice the
particular should gather a modest number of
observations to get an initial verification that the
Exponential distribution was a reasonable fit. Then only
the formal change point can be applied. In view of this
our main simulation is based on assumption of 9 readings

without testing, with testing starting at the 10th

observation, however 9 readings itself is hard to believe
in a Exponential distribution for the Quality variable.
Perhaps it is making reasonable compromise between
the conflicting desires.

The same 10 million sequence of length 200 are
used to find out cut offs points up to n =200. The
resulting control limits are presented in table 2, these
are our recommendation for implementation of change
point SPC schemes.

TABLE 2: CUTOFFS hn, ααααα  FOR SAMPLE SIZE n AND HAZARD RATE ααααα STARTING AT SAMPLE 10

n 0.05 0.02 0.01 0.005 0.002 0.001

10 3.502147 4.012155 4.965784 5.554781 6.124578 7.251478

11 3.113349 3.581442 4.446466 4.989267 5.523502 6.559912

12 2.956393 3.387537 4.193278 4.691289 5.173446 6.126179

13 2.844282 3.249034 4.012429 4.478447 4.923406 5.816369

14 2.760199 3.145156 3.876793 4.318816 4.735875 5.584012

15 2.694801 3.064362 3.771298 4.194659 4.590019 5.40329

16 2.642482 2.999727 3.686902 4.095333 4.473333 5.258713

17 2.599676 2.946844 3.617851 4.014066 4.377863 5.140422

18 2.564004 2.902774 3.560308 3.946343 4.298305 5.041846

19 2.53382 2.865485 3.511618 3.88904 4.230987 4.958436

20 2.507949 2.833523 3.469884 3.839923 4.173285 4.886941

(Table Contd. on next page)
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22 2.465907 2.781584 3.402066 3.760107 4.07952 4.770763

24 2.433208 2.741187 3.349318 3.698028 4.006591 4.680402

26 2.407049 2.708869 3.30712 3.648365 3.948249 4.608113

28 2.385646 2.682428 3.272595 3.607732 3.900514 4.548968

30 2.36781 2.660393 3.243823 3.573871 3.860735 4.49968

35 2.333983 2.618603 3.189257 3.509651 3.785291 4.406203

40 2.310105 2.589104 3.15074 3.46432 3.732037 4.340219

45 2.29235 2.567169 3.122098 3.430612 3.692438 4.291154

50 2.27863 2.55022 3.099967 3.404565 3.661839 4.25324

60 2.258813 2.525737 3.067998 3.366941 3.61764 4.198476

70 2.245188 2.508905 3.04602 3.341075 3.587253 4.160826

80 2.235246 2.496622 3.029982 3.3222 3.565079 4.133351

90 2.227671 2.487263 3.017763 3.307819 3.548184 4.112418

100 2.221707 2.479896 3.008143 3.296497 3.534884 4.095939

125 2.211184 2.466895 2.991167 3.276519 3.511414 4.066858

150 2.204314 2.458408 2.980086 3.263477 3.496093 4.047874

175 2.199477 2.452433 2.972283 3.254294 3.485304 4.034507

200 2.195887 2.447997 2.966491 3.247477 3.477297 4.024585

n 0.05 0.02 0.01 0.005 0.002 0.001

V. PERFOMENCE OF THE CHANGE POINT
APPROACH WITH WEIBULL DISTRIBUTION

In this section, we are interested to demonstrate
the change point model behaviour when we compare
CUSUM chart performance in the contest of Weibull
distribution. Here also we have developed 10 million
sequence of length 200 with varying á value of 0.05,
0.02, 0.01, 0.005, 0.002 and 0.001, corresponding in
control ARLs of 20, 50, 100, 200, 500 and 1000 for
different ‘n’ values ranging from 3 to 200. These values
are depicted in table 3. In the context of Weibull
distribution also (i.e. when the phenomenon follows
Weibull distribution) for each α, control limits hn,α
describes sharply initially but then stabilize

The above points are illustrated in table 3 by
considering α value 0.02, 0.01, 0.005 and 0.002. A shift
of size δ∈ {0, 0.5, 0.6, 0.75, 1.25, 1.5, 1.75, 2, 2.25,
2.5, 3} was introduced τ∈ {10, 25, 50, 100, 250}. The
values presented in the Table 3 are the ARL’s of the
change point procedures. These were calculated by
simulating a data series, adding the shifts to all Xi’s, i >
τ  and counting the number of readings from the
occurrence of the shift until the chart is signalled. Any
sequence which is signalled before time τ  was

discovered the appropriate formula hn is used. So that
the in control ARL’s differs from normal.

It is clear from the table that the ARL’s are affected
by the amount of history is gathered before the shift,
with a faster response carrying with more history. These
ARL’s are also depends α and δ. It can also be observed
that α is large or δ is large the ARL tends to be smaller,
as one would anticipating.   For different δ values in
the range 0 to 3, we present resulting ARLs in Fig. 1 to
4.

From the figures we note that the ARLs are taken
on a log scale for clear comparison. In this context the
change point slightly worse than k=0.25 CUSUM chart
for small shifts in the process average, for medium shifts
also the change point model inferior to k=0.5 and k=1
CUSUM chart. However there is a marginal variation
between change point model and CUSUM with k=2.5.
For large shifts also there is no much of difference
between change point model and CUSUM chars. The
behaviour of change point model when the phenomenon
follows Weibull distribution is similar to the behaviour
of change point model with CUSUM chart in the context
of normal distribution [2].
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TABLE 3: THE ARL OF THE CHANGE POINT PROCEDURE WHEN SHIFT OCCURS AT THE ‘START’
POSITION WITH SIZE ‘ααααα’

 α α α α α

ααααα start 0 0.25 0.5 1 1.5 2 2.5 3

0.02 10 210.7262 14.56642 7.543947 3.840722 2.576132 1.938022 1.553275 1.295988

25 84.29046 5.826568 3.017579 1.536289 1.030453 0.775209 0.62131 0.518395

50 42.14523 2.913284 1.508789 0.768144 0.515226 0.387604 0.310655 0.259198

100 21.07262 1.456642 0.754395 0.384072 0.257613 0.193802 0.155327 0.129599

250 8.429046 0.582657 0.301758 0.153629 0.103045 0.077521 0.062131 0.05184

0.01 10 248.0634 17.14735 8.880612 4.521236 3.032581 2.281409 1.82849 1.525616

25 99.22537 6.858941 3.552245 1.808494 1.213032 0.912563 0.731396 0.610246

50 49.61268 3.429471 1.776122 0.904247 0.606516 0.456282 0.365698 0.305123

100 24.80634 1.714735 0.888061 0.452124 0.303258 0.228141 0.182849 0.152562

250 9.922537 0.685894 0.355224 0.180849 0.121303 0.091256 0.07314 0.061025

0.005 10 285.4007 19.72829 10.21728 5.20175 3.48903 2.624795 2.103705 1.755244

25 114.1603 7.891315 4.086911 2.0807 1.395612 1.049918 0.841482 0.702098

50 57.08014 3.945657 2.043456 1.04035 0.697806 0.524959 0.420741 0.351049

100 28.54007 1.972829 1.021728 0.520175 0.348903 0.262479 0.210371 0.175524

250 11.41603 0.789131 0.408691 0.20807 0.139561 0.104992 0.084148 0.07021

0.002 10 334.7579 23.1401 11.98425 6.10134 4.092423 3.078727 2.46752 2.058796

25 133.9031 9.256039 4.793701 2.440536 1.636969 1.231491 0.987008 0.823518

50 66.95157 4.628019 2.396851 1.220268 0.818485 0.615745 0.493504 0.411759

100 33.47579 2.31401 1.198425 0.610134 0.409242 0.307873 0.246752 0.20588

250 13.39031 0.925604 0.47937 0.244054 0.163697 0.123149 0.098701 0.082352

Fig. 1 Fig. 2
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Fig. 3

Fig. 4

VI. CONCLUSIONS

In the present paper control limits or cut off points
[hn,α] are obtained by simulation of 10 million sequence
of length 200 with the process readings start at 3 and
10 are obtained in the context of Weibull distribution.
i.e. when the phenomenon under considerations follows
Weibull distribution. This paper also provides a
comparative study between change point model and
CUSUM chart by considering ARLs in the context of
Weibull distribution.  We found that the performance of
change point model is superior to CUSUM chart in the
context of Weibull distribution, it is found that the change
point model is slightly worse than CUSUM chart in

detecting small shifts, which is similar case with the
normal distribution [2]. It would be very interesting to
study the behaviour of change point model and
comparing its performance with CUSUM chart in the
context of non normal distributions i.e. when the
process average follows non normal distribution
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