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Booth Modified RNS Multiplier in
RNS to Binary Code Converator
Using {2P+1 2P, 2p-1}

Abstract: A RNS reverse convertor moduli set {2p+1,2p,2p-1} is proposed in
this paper. Chinese Remainder Theorem is simplified to get a reverse converter
that uses mod-{2p-1} operations. The proposed architecture reduces the
burden of explicit use of moduli operation in conversion process and we
prove that theoretically speaking it outperforms state of the art equivalent
converters. In order to restrict the range we makes use of radix-8 booth
modified rns multiplier in the proposed converter on cyclone2 FPGA. When
compare to other convertors, this architecture saves power, area, delay and
cost .

Index Terms: Code converters, field-programmable gate arrays (FPGAs),
residue arithmetic,Soc encounter,cadence.
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I. INTRODUCTION

The alluring carry free property of residue Number
systems (Rnss) gives space for Rns executions in a
mixture of specific high-execution digital signal
processing (Dsp) requisitions. Rns is generally
connected also and increase overwhelmed Dsp
requisitions, for example digital separating and
convolutions [1]. Moduli determination and information
change are the two most essential issues that verify the
Rns equipment execution and may confine the use of
Rns in Dsp requisitions [2].The most popular moduli
set is {2p+1, 2p,2p-1} in RNS scaling. The advantage
of using the {2p+1,2p, 2p-1} over {2p+1, 2p, 2p–1} is
briefly narrated in [3]-[5]. In spite of the fact that
numerous information convertors had proposed
dependent upon either the Chinese remainder theorem
(CRT) [5]–[8], or on the mixed radix conversion (MRC)
[9]. The unpredictable and moderate modulo-operation
is major issue in Crt. verify the Rns equipment execution
and may confine the usage of Rns in Dsp requisitions[2].
The complex and slow modulo-operation is major
problem in CRT. In this paper, a novel reverse converter

for the moduli set {2p+1, 2p,2p-1} is proposed. First,
when compared to converters, using at mod-(2p-1)
(2p+1) and mod-(2p) (2p-1) operations ,used in [3] and
[6] the CRT is simplified to obtain a reverse converter
that utilizes only mod- (2p-1). Next, we show a low
many-sided quality execution that does not require the
explicit utilization of the modulo operation in the
conversion transform as it is ordinarily the case in the
conventional Crt furthermore some other state of the
workmanship identical converters

II. PROPOSED ALGORITHM

From the hypothesis, we quickly revaluate rejecting
evidence the accompanying hypothesis, which has been
displayed in [6] before presenting our methodology.

Theorem 1: Given the Rns number with
appreciation to the moduli set (u1, u2, u3) is in the form
of {2p-1,2p, 2p+1},the decimal likeness this Rns
number is registered for (u1, + u3) even and odd,
separately, as accompanies [6]
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U=-m2u1+m1| (u1+u3) -m3u2 |m2m3 ... (1)

U=-m2u1+m1| m3 (u1+u3) -m3u2|m2m3 ...(2)

we have to simplify (1) and (2) in order to obtain a
convertor that only uses modulo (2p-1).

Theorem 2:

Given the Rns number with appreciation to the
moduli set (u1, u2, u3) is in the form of {2p-1, 2p,
2p+1}, the decimal likeness this Rns number is
registered for (u1,+u3) even as accompanies :

U = y; for y > 0; U = y + M for y<0; ...(3)

Where y=m2(u2-u1) +u2+m1m2| -u2|m2m3 ...(4)

Proof: to prove this theorem we have to use lemma
in [10]

|am1|m1m2=m1|a|m2 ...(5)

To be more precise (1) producing negative result,
U is given as

U=|-m2u1+m1|m2 –m3u2|m2m3|M

put  m3=m2-1 and apply (5)

we get

y=|m2(u2-u1)+u2+m1m2| -u2|m3|M ...(6)

Comparison (6) is the general declaration of (4),
substantial for both positive what’s more negative. The
following phase of the confirmation is to show that at
most one curative expansion is needed for the count of
the mod-M. We show that by acknowledging the best
worth one may get in (6).

Most positive value: The following must hold true
to get most positive value in (6):

| -u2|m3 = m3-1, u1=m1-1, u2=1, u3=m3-1

Substituting all these values in (6), we get

U=|M-2+m1m2+2m2+1|M ...(7)

Since 0<M-2m1m2+2m2+1<M, no corrective
addition of M is required for obtaining correct result.

m2
2

m2
2

u1+u3
2

u1+u3
2

u1+u3
2

u1+u3
2

Here, for y<0, this must hold true | u2|m2=0;
u1>u2; So here one corrective addition is required for
computing correct result which can be done as:

Most negative value:To obtain most negative in
(6) put

u1=m1-1; u2=0; | –u2|,3 =0;

U=|-m1m2+1|M ...(8)

since 0<M-2m1m2+1<M, only one corrective addition
of M is required for obtaining correct result if y <0.
Thus given that M=m1m2m3; in case y<0 the exact result
looks like:

U=m2 (u2-u1)+u2+m1m2| -u2|m3 ...(9)

Theorem 3: Given the Rns number with appreciation
to the moduli set (u1, u2, u3) is in the form of {2p-
1,2p,2p+1},the decimal likeness this Rns number is
registered for (u1,+u3) odd, as accompanies [6]

{U = y; for y>0; U = y +M for y<0; ...(10)

Where

y=m2 (u2-u1)+u2+m1m2| + –u2|m3 ...(11)

Proof: To be more accurate (2) will rarely produce
negative result, U is given as

U=|-m2u1+m1 + (u1+u3)=m3u2|m3|M

Put =-1 and apply (5) we get

U=|m2 (u2-u1)+u2+m1.m2| -u2|m3|M ...(12)

the above equation is a simple form of |y|M. Just as
said above one corrective addition is required for the
calculation of mod-M.This illustration is as follows Most
positive value:The following must hold true to get most
positive value in (12)

| + -u2|m3=m3=1, u1=1, u2=1, u3=m3-1.

substituting all these values in (12), we get

U = |M - m1m2 + 1|M ...(13)

Since 0<M-2m1m2+2m2+1<M, only one
corrective addition of M is required .

u1+u3
2

u1+u3
2

u1+u3
2

u1+u3
2

m3
2

m2+m3
2

m3
2

u1+u3
2

u1+u3
2

m3
2
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Once more, for y<0; the following must hold true:

| + -u2|m3=0; u1=1; u2=0; and u3=m3-1.

With the help of these values (12) is in form of

U = |-m3+ 1|M ... (14)

since 0<-+1+M<M,one corrective addition is used to
get exact result.Regarding the case y<0,the correct result
can be computed as follows :

U=m2 (u2-u1) +u2+m1m2 (| + -

u2|ms+m3) ...(15)

u1+u3
2

m3
2

u1+u3
2

m3
2

III. HARDWARE PROPOSED ARCHITECTURE

Fig. 1: Fittings structure of our proposal.
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The fittings acknowledgment of the proposed plan,
portrayed in Fig. 1 is dependent upon the comparisons
in Hypotheses 2 and 3. The adder A output : A= (u2-u1)
next the consequence is duplicated by m2 to get M2A.

The three-data adder B figures ( -u2) and might

be executed as a 3:2 carry save adder carry propogate
adder (Cpa). We demonstrate later in this area that just
one restortive expansion or subtraction is obliged to
register the modulo-m3 operation and this could be
consolidated with the conceivable increases of m3 and

.

The aforementioned operations are actualized by
adder C with a selectable info. The fittings execution
evacuates the divisions by moving left all the operands
included in adder B and C, along these lines amplifying
the two adders with one spot. At long last, the yield of
adder C, without the rightmost spot to represent the
past movement, is reproduced by P12=(m2m1) and the
effect is summed together by snake D with the one
from the multiplier m2. The additional include u2 for
adder D might be implanted in the  multiplier consistent
with the rule of combined number-crunching, therefore
D could be really executed as a standard 2:1 adder.

With help of 4 following cases we can say that no
explicit use of hardware in the modulo-operation for
computing

| –u2|m3 and| + –u2|m3;

Case 1: Here) =0 and =2p-1 and the results in the most
negative value . For this case the modulus in (4) reduces
to |–u2|m3. To perform the modulo m3operation we need
to do corrective additions.

Given that m3+ (–u2) = (2p-1)-(2p-1) =0, for any
positive integer n, for computing modulo we need only
one corrective addition with m3.

Case2: Here (u1+u3) = even and u2 =0 and the results
in the most negative value. In this case the modulus in

(4) reduces to | |m3. To perform the modulo
operation  we need to do corrective additions.

Given that m3 ( ) = (2p-1)-(2p+2p-2/2) =
(2p-1)-(2p-1) =0.This says sum in modulo adder cannot
exceed m3, one subtraction with is required.

Case 3: (u1+u3)= 1 and  = 2p -1.Then modulus from
(11) reduces to | + ( ) -u2|m3.

In this case + – u2 is always negative that

m3 + + -u2=2p-1- + -2p+1= p>0, for any

integer p. For computing the modulo, we need one
corrective addition with .

Case4: (u1+u3) is odd, u2= 0.The modulus from (11)

reduces to| + ms. given

that (2m3)-(( )+ ) = 2(2p-1)-(( )

+(((2p+2p-2)-1)/ 2))=4p-2-3p+2=p>0, for any positive
integer. For computing the modulo we need one
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corrective subtraction with m3: so with one most add
or subtract we implement modulo m3.

In the following, adding of ( ) the term is
actually delayed and appended to the correction step
required for the modulo-m3 operation without any delay
overhead.Thus, we removed as adder C input and
rechecked the four correction cases detailed above.

if (u1+u3) is even,the term ( )is not included in
calculation and the correction performed as usual.

If (u1+u3)=odd , the provisional sum at the output

of adder B is - u2 instead of + ( ) - u 2 .

Then the provisional sum is smaller with than it

should actually be.

Taking into consideration the correction rules
changes as follows:

1. (u1+u3) = even

if provisional sum >0 add m3.

if provisional sum is >m3 then subtract m3; otherwise
do nothing;

2. (u1+u3) = odd

if provisional sum is < - ( ). add ( ); if provi-

sional sum is > then subtract ;

otherwise add ;

As indicated by (9) and (15), no need of explicit
implementation for modulo-M. Here corrective addition
of m3is done before multiplication of m1m2.

The correction is done when the following
conditions are true:

u1>u2

{| –u2|m3 = 0; (u1+u3) even ...(16)

{| + –u2|m3 = 0;

(u1+u3) old ...(17)

By revising the correction rules we can combine
modulo-m3operations as follows:

1. if . (u1+u2) =even

if provisional sum < 0 add m3; (17) become true when
the provisional sum is equal to, but on observing Case
1that (16) is false,  hence no need of extra m3 addition;

• if provisional sum =0 and (16) is true (the sign bit
of adderA is 1) add  ;

• otherwise do nothing;

(17) become true when the provisional sum = m3
and but on observing Case 2 all these happens when
u2=0 and u1=2p, hence (16) become true.Hence for
modulo m3 adder cancelling of the required addition on
behalf of previous m3 corrective subtraction.

2. if . (u1+u3) = odd

if provisional sum < ( ) add ;

from case 3 the provisional sum is

-u2 <- , so (17) is false;

therefore no extra addition of  is required to add.

if provisional sum < ( ) add ;

(17) become true when provisional sum = .

Following this u1=u3-2u2=2m3 ⇒ u1-u2=2m3-u3+u2;

Since 2m3-u3> 0 (16) also become true, then correction
will become

+ m3 = . otherwise add ( ).

From these computations there is an incredible
decrease of modulo operation with assistance of a solitary
remedial addition or subtraction there by diminishing
the disambiguation quality of convertor.

IV. RESULTS

45nm Technology

The top module is FINAL.v

# of cells=2898
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Dyanimic power=1.30mw

Total area=4904

Slacktime=54.3ns

V.  LAYOUT VIEW

VI. MODIFICATIONS AND CONCLUSION

In this proposed architecture we make use of
radix-8 RNS booth modified multiplier [11]with help of
beamount smith modulo adder[12].By using booth
modified multiplier the total partial products generated
are reduced to 3.When compare to all other converters
in [6][3] this proposed convertor uses an efficient way
of reversion conversion process in area, complexity.
when compared to the usage of mod-(2p+1)(2p-1)(2p)
operations in [3][6] this proposed architectur used the
mod- (2p-1) by simplyifing the traditional CRT.Then
we implement the corrective addition m3 instead of
corrective addition of M.hence, we implement a
lowcomplexity architecture which uses simple addition
or subtraction for reducing the overhead of the explicit
modulo operation.
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