
38

Use of Locality Sensitive Hashing
in Query by Humming Method of
Audio Signal

Sonal Goel
Manav Rachna College of Engineering

Faridabad
E-mail: sonalgoel23@gmail.com

Mehak Malik
Manav Rachna College of Engineering

Faridabad

Charu Pathak
Department of Electronics &

Communication
Manav Rachna University, Faridabad

E-mail: charuup123@gmail.com

Abstract: This paper is based on Locality Sensitive Hashing (LSH) which
proposes a query by humming method. This method constructs an index of
melodic fragments by extracting pitch vectors. This method automatically
deciphers a song query into notes and then concentrates the pitch vectors as
similar to the index construction. This method searches for similar fragments in
the database to obtain a directory of candidate melodies for each query pitch
vector. This is performed efficiently by using LSH. In our experiments, the
method achieved mean reciprocal rank of 0.885 for 2797 queries when searching
from database of 6030 Musical Instrumental Digital Interface (MIDI) melodies.
MIDI allows multiple instruments to be played from a single controller, which
makes stage setups much more portable.

Keywords: Music, Information retrieval, Database query processing, Audio
Systems

I. INTRODUCTION

Query by humming (QBH) refers to music

information retrieval systems where short audio clips

of singing or humming act as queries. If the user does

not remember the name of the artist or the song to make

a metadata query, a natural option is to sing, hum, or

whistle a part of the melody of the song into a

microphone and let a QBH system to retrieve the song.

The QBH task can be broadly divided into two subparts:-

i) converting a query into a format which enables robust

searching and ii) matching the query with melodies in

the database. The former problem is often associated

with automatic transcription of a query into temporally

segmented note events or into frame-wise measured

pitch trajectory, whereas the latter concentrates on

measuring melodic similarity. The former problem is

often associated with automatic transcription of a query

into temporally segmented note events or into frame-

wise measured pitch trajectory, whereas the latter

concentrates on measuring melodic similarity.

The major challenges for QBH systems include i)

handling of highly varying quality of queries, ii) huge

size of melody databases, and iii) automatic production

of the melody databases. First, the quality of queries

may vary drastically in terms of staying in tune and

tempo and also in the recording quality of the query

audio. Second, linear search over database items is not

acceptable due to huge databases of music. Third, most

of the QBH research has concentrated on searching from

databases of MIDI melodies and it would be highly

desirable to obtain such databases directly from music

recordings. From an application point of view, this

would also enable immediate playback of the retrieved

melody segments in the original music piece.

Fig. 1 shows a block diagram of the method. Given

a database of melodies in MIDI format, the method

constructs an index of melodic fragments by extracting

pitch vectors. A pitch vector stores an approximate

representation of melody contour within a fixed-length

time window. In retrieval, the method automatically

converts a query into MIDI notes and then extracts pitch

vectors. For each query pitch vector, the method

Fig. 1. Block diagram of Proposed model

39MR International Journal of Engineering and Technology, Vol. 8, No. 2, November 2016

searches for nearest neighbors in Euclidean space from

the index of database melody fragments to obtain melody

candidates and their matching positions in time. This

can be performed very efficiently by using locality

sensitive hashing (LSH). Final ranking of candidates is

done by comparing the whole transcribed query to each

candidate melody segment. Due to the melodic fragment

index, the method manages long database melodies

directly, without having to segment melodies into

phrases. Also, the queries do not have to start from the

beginning of a melodic phrase. Using LSH provides a

significant speed-up and retrieval performance

comparable to the state-of-the-art.

II. LITERATURE REVIEW

Apart from the clinical studies, the human voice

is also studied in the contexts of singing and speech. In

singing, the sounds is produced by an airstream from

the lungs outwards, which then passes through the

glottis the vocal tract. These vibrations of vocal cords

produce the fundamental frequency and its harmonic

partials thus producing the music. The vocal tract acts

as an amplifier thus increasing and decreasing the

amplitude of each partial [13]. The mechanisms of

producing a sound by means of mouth and vocal tract

exceed in number and variety those involved in context

such as percussive sounds, by clashing teeth, rarely

found in speech. There have been several works to

partially in sound retrieval using vocalization. The

evolution in this area by a number of specific techniques

as Query by Humming has been summarized [14, 15,

and 16].

The sound synthesis also becomes better by the

analysis of a vocal signal. The pitch and loudness are

the most commonly used factors used for information

retrieval of the vocal signal.

III. CONSTRUCTON OF INDEX OF MELODIC

FRAGMENTS

The method constructs an index which stores

melodic fragments, their temporal positions within the

database melodies, and melody identifiers. The melody

identifier determines the song from which a melody

fragment has been extracted. The index enables efficient

retrieval of melodies from the database.

A. PITCH VECTOR EXTRACTION

A melody is here defined as a sequence of L notes

n1:L, where i:th note ni = _pi, bi, ei_ is defined by pitch

pi in MIDI note numbers, and the onset time bi and the

offset time ei of the note in seconds. The melodic

fragments are represented as pitch vectors which are

extracted from such note sequences. Given a melody

n1:L, the pitch vectors are extracted as follows. First,

rests between consecutive notes are removed by

extending the offset of a preceding note to the onset of

the following note, i.e., ei bi+1 for i = 1, . . . , L “ 1.

Then for each note i, a pitch vector pi of length d is

extracted by determining the melody pitch values within

w-second window starting from the note onset bi. Fig.

2 shows an example of pitch vector extraction by using

window size w = 3 s and vector length d = 20. The top

panel shows a part of a melody and the bottom panels

show the first four pitch vectors pi and their extraction

positions bi.

Fig. 2. An example of pitch vector extraction

B. SIMILARITY OF MELODY FRAGMENTS

The similarity of melodic fragments is here measured

using Euclidean distance between pitch vectors.

Formally, two pitch vectors pi and pj define points in

d-dimensional space where the distance is given by-

Given a melodic fragment defined by point pi, we

can find similar fragments in the index by searching for

nearest neighbors (NNs) of the point, i.e., all the points

to which the distance is less than a specified threshold

r. This could be done by simply measuring the distance

of pi to all the vectors in the database. However, this

results in a search time that depends linearly on the

database size. To obtain a sub linear time complexity,

(
d


k =1

|pi (k) - pj (k)|2)
(1/

2
)

||pi - pj || = ... (1)

40

we use locality sensitive hashing [8, 9]. LSH is a

randomized algorithm for searching approximately

nearest neighbors in high dimension spaces.

III. QUERY PROCESSING AND RETRIEVAL OF

MELODY

The retrieval stage consists of the following steps:

i) transcription of a sung query into notes, ii) extraction

of pitch vectors from the notes, iii) retrieving similar

melodic fragments in the database using LSH, and iv)

performing final ranking of the retrieved melody

candidates.

C. QUERY TRANSCRIPTION AND TUNING

A sung query is first converted into a note

sequence. For this task, we use a melody transcription

method designed for polyphonic music. Although it is

not necessary to handle polyphony in query transcription,

this method is used also to produce a melody database

directly from music recordings (see Fig. 1). The method

is an improved version of [12]. Briefly, the method uses

a frame-wise pitch salience estimator to measure the

strength of different fundamental frequencies in 92.9

ms analysis frames with 23.2 ms interval between

successive frames. This feature extractor is followed

by HMMs representing melody notes and the

background. The method also applies a musicological

model to control between-note transitions. As an output,

the method produces a sequence of notes in the format

introduced in Sec. 2. One could also use some other

melody transcription method which produces note

sequences, e.g., the method proposed in [12]. The

queries are not likely performed in absolute tuning

(MIDI note 69 at 440 Hz), i.e., the tuning of a sung

note can be between two integer MIDI pitches.

Therefore, each transcribed query note is tuned by

shifting it in frequency at most half a semitone up or

down so as to maximize pitch salience within the note.

Fig. 3 shows an example of transcribed and tuned query

notes with the estimated pitch silences..

D. RETRIEVAL OF MELODIES

The tuned query note sequence is then used to

retrieve similar melodic fragments from the database

by extracting pitch vectors from the query. Let mj

denote j:th window size modifier. For each query note

onset bq, the method samples M pitch vectors using

window sizes wmj , j = 1, . . ., M. A modifier value m <

1 implies that a query melodic fragment is performed

faster than the database melodic fragment. Respectively,

a slower performance is indicated by modifier values

greater than one.

A reasonable range for window modifier values is

between 0.65–1.7. For each query pitch vector, the

method then searches for similar melodic fragments in

the database using LSH. The LSH returns the nearest

neighbours and their distances to the query point as

matches. After retrieving matches for all the query

points, we have a list of candidate melodies for final

ranking

E. FINAL RANKING

To obtain the final list of retrieved melodies, the

candidate melodies are ranked according to their distance

to the entire query note sequence. The ranking is

performed by examining all the matches preserved in

the previous step. One match is denoted by _bq, mj,

bc, s_, where bq is the extraction position of the query

pitch vector, mj is the used window size modifier, bc is

the extraction position of the database melodic fragment,

and s is the song identifier. In addition, let t(q)0 and

t(q)1 denote the onset time of the first query note and

the offset time of the last query note, respectively. Then

the time region corresponding to the entire query in the

candidate melody is defined by t(c)0 = bc”(bq”t(q)0)/

mj and t(c) 1 = bc+(t(q)1 “bq)/mj . Hereafter, the term

candidate segment refers to this time region within the

candidate melody. The upper panel in Fig. 4 shows an

example how the candidate segment is determined for

one match. The entire query and the candidate segment

Fig. 3. A transcribed query. The grey-level intensity
indicates the estimated pitch salience and the black boxes

show the transcribed and tuned query notes

41MR International Journal of Engineering and Technology, Vol. 8, No. 2, November 2016

are then normalized both in pitch and time for distance

calculation.

The used number M of window size modifiers mj

was 17, and recursive alignment was used with five

possible division points and two recursion levels.

With a Matlab implementation running on a 3.2

GHz Pentium 4 processor, the mean query time was

4.5 seconds of which the query transcription takes

approximately 30%, LSH 32%, and the final ranking

13%. LSH provided a speed-up of factor 4–20 compared

to exact nearest neighbour search in candidate retrieval

without losing any accuracy in results. Retrieval errors

are mostly related to the query performances: some

queries differ from the correct answer so much that

matching is very challenging even for human.

The results for the automatically transcribed

melody database are expectedly worse than with the

manually prepared MIDI files in Jang’s corpus. However,

the method achieved MRR of 0.578 which is rather

encouraging result and motivates for further study.

V. CONCLUSIONS

A QBH method based on LSH and achieved

retrieval performance comparable to the state-of-the-

art has been presented in this paper. The method also

achieved promising results for QBH of audio. The current

representation of melodic fragments enables accurate

results but contains redundant information and

consequently uses memory inefficiently.

Future work includes development of a more

compact representation. In addition, retrieval directly

from music seems very promising for future

development.

VI. REFERENCES

[1] R. Typke, Music Retrieval based on Melodic Similarity,
Ph.D. thesis, Universiteit Utrecht, 2007.

Fig. 4. A query and a matching candidate melody. The upper
panel shows the matching fragments in these melodies and
the determined candidate segment (light grey area). The
lower panel shows the normalized query and the normalized
matching segment for distance evaluation

The lower panel in Fig. 4 shows the normalized

query and the normalized candidate segment. The

distance between the normalized query and the

normalized candidate segment is evaluated by using

recursive alignment (RA) proposed by Wu et al. [7].

The above distance evaluation is performed for each

match. The minimum distance match per candidate

melody is preserved, since there may exist several

candidate segments per melody. Finally, the list of

candidates is sorted in ascending distance order and

returned to the user.

IV. RESULTS

The method performance is measured using mean

reciprocal rank (MRR) and top-X hit rate criteria.

For the Jang’s corpus, the method reached MRR

of 0.885 and top-3 hit rate of 90%. For these results, it

was sufficient to preserve only two smallest-distance

matches per query point which returned on the average

134 candidate melodies for a query. Interestingly, MRR

of 0.592 could be reached just by ranking the candidate

melodies according to the number of matching melodic

fragments.

Table 1: Melody Retrieval Results

MRR Top-X hit rate (%)

Corpus N Dx 1 3 5 10 20

Jang 2797 6030 0.885 86 90 91 92 93
2797 2048 0.909 89 92 93 94 95

Music 159 427 0.578 52 58 62 69 73

42

[2] K. Lemstr¨om, String Matching Techniques forMusic
Retrieval, Ph.D. thesis, University of Helsinki, 2000.

[3] C. Meek and W. Birmingham, “Applications of binary
classification and adaptive boosting to the query-by-
humming problem,” in Proc. 3rd International Conference
on Music InformatioRetrieval, 2002.

[4] J.-S. R. Jang, C.-L. Hsu, and H.-R. Lee, “Continuous HMM
and its enhancement for singing/humming query retrieval,”
in Proc. 6th International Conference on Music Information
Retrieval, 2005.

[5] J.-S. R. Jang and M.-Y. Gao, “A query-by-singing system
based on dynamic programming,” in Proc. International
Workshop on Intelligent Systems Resolutions, 2000.

[6] A. Duda, A. N¨urnberger, and S. Stober, “Towards query
byN humming/singing on audio databases,” in Proc. 7th

International Conference on Music Information Retrieval,
2007.

[7] X. Wu, M. Li, J. Yang, and Y. Yan, “A top-down approach
to melody match in pitch countour for query by humming,”
in Proc. International Conference of Chinese Spoken
Language Processing, 2006.

[8] A. Andoni and P. Indyk, “Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions,” in
47 th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), 2006, pp. 459–468.

[9] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni,
“Locality sensitive hashing scheme based on p-stable

distr ibutions,” in Proc. ACM Symposium on
Computational Geometry, 2004, pp. 253–262.

[10] M. Casey and M. Slaney, “Fast recognition of remixed
music audio,” in Proc. 2007 IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2007.

[11] M. Covell and S. Baluja, “Known-audio detection using
Waveprint: Spectrogram fingerprinting by wavelet hashing,”
in Proc. 2007 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2007.

[12] M. Ryyn¨anen and A. Klapuri, “Transcription of the
singing melody in polyphonic music,” in Proc. 7th
International Conference on Music Information Retrieval,
2006.

[13] Sundberg J (1977) The Acoustics of the Singing Voice,
Scientific American offprints, vol 356. W.H Freeman, New
York Ghias A, Logan J, Chamberlin D, Smith BC (1995)

[14] Query by humming: Musical information retrieval in an
audio database. In: Proceedings of the Third ACM
International Conference on Mul-timedia, MULTIMEDIA
’95. ACM, New York, pp 231–236

[15] Nagavi TC, Bhajantri NU (2012) An extensive analysis of
query by singing/humming system through query
proportion. Int J Multimed Appl 4(6). doi:10.5121/
ijma.2012.4606

[16] Weinstein E (2005) Query by humming: a survey. Tech.
rep., NYU and Google



