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INTRODUCTION 

FPGA based Digital System 
Design-lssues and Challenges 
Abstract: Applicatton for Feld Programmable Gate Array (FPGA) fechnology 
are substantially increasing due to its re-configurability that offers significant 
advantages in the flexibility. Recent advances in fabrication have increased its 
logic capacity as well. FPGAs are evolving at a rapid speed with improved 
performance and logic density. However, high power consumption in FPGAs 
becomes a significann jactor n the design consideration. Trends in technology 
scaling makes leakage power a serious concern for the designers. Moreover 
increased density has made these devices more susceptible to fuilure due to 
external radiations. This paper describes the generic architecture of FPGA and 
basic development stages for FPGA based digital design. Then it covers the 
issues of power consumption in FPGA and proposed strategies for its optimization 
and finishes with the description of radiation effects on FPGAs and the proposed 

mitigation techmiques. 

Digital designer has various options of using SSI 
(small-scale integrated circuits) or MSI (medium scale 
integrated circuits) components, simple programmable 
logic devices, Microprocessor/ Microcontroller, Masked 
Programmable Logic Devices (MPGA), CPLD, ASICs, 
FPGA etc. In SSi and MSI difficulties arises as design 
SIZe increases and moreover interconnections grow with 
complexily resulting in a prolonged testing phase. 
Programmable Logic Devices (PLDs) include 
programmable array logic (PAL) and programmable 
logic array (PLA) wherein architecture are not scalable. 
power consumption and delays play an important role 
in extending the architecture to complex designs and 
implementation of larger designs leads to same difficulty 
as that of discrele components. The next stage of 
sophistication resulted in Complex PLDs (CPLDs), 
which were nothing eise than collection of multiple PLDs 
with programmable interconnections. Microprocessors 
and microcontrollers provide a flexible computing 
platformn and capable of executing a large class of 
applications. Thcy have fixed hardware and can be 
programmed as per their capabilities and limitations. 
Application Specific Integrated Circuits (ASICs) are 
designed for specific applications and have fixed 
functionality and superior performance for a highly 
restricted set of applications. A quest for high capacity 
is mel With two choices: one with Masked 
Programmable Logic Devices (MPGA) which is 
customized during fabricat1on. low voiume expensive 
and has prolonged time-t0-market and high financial 
risk and other with Ficld Programmable Logic Devices 
(FPGA) which Is customized by end user, implements 

multi-level logic function and has fast time to market 
and low risk. 

FPGA is a two dimensional array of customizable 
logic block placed in an interconnect array. It is 
programmable at users' site like PLD and implements 
thousands of gates of logic in a single device like MPGA. 
It employs logic and interconnect structure capable of 
inplementing multi-level logic and is scalable in 
proportion with logic removing many of the size 
limitations of PLD derived two level architecture. 
Therefore it offers the benefit of both MPGAs and PLDs. 

It is based on the principle of functional compieteness. 
Functionally complete elements (Logic Biocks) are 
placed in an interconnect framework which comprises 
of wire segments and switches and provide a means to 
interconnect logic blocks. Its interconnection 
framework circuits are partitioned to logic block size. 
mapped and routed. 

FPGAs now deliver ASIC-like density and 
performance, while their flexibility and operational 
characteristics offer distinct advantages over their ASIC 
counterparis. As innovative architectures with embedded 
processors, memory blocks and Digital Signat 
Processors (DSPs) emerge; designers are turning more 
towards FPGAs for new system on chip (SoC) designs. 
If the design time in case of FPGA is 9 months, then it 
takes approximately 2-3 years in case of ASIC for the 
same design. Moreover, high initial ASIC cost is 
recovered only in very high volume products. Due to 
Moore's law, many ASIC market requirements are now 
met by FPGAs. Use of FPGAs as a % of logie market 
has increased from 10 to 22% in past 3-4 years. FPGAs 
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(or programmable logic) are the fastest growing segment of the semiconductor industry. 

2 

The architecture of various FPGAs differs fronm 
vendor to vendor and is characterized by structure and 
COntent of logc block and of routing resources. Just to 
examine, we will look at FPGA: Xilinx Virtex-4 and 
Virtex-5. 

Generic Xilinx Architecture consists of: 

Symmetric Array based; Array consists of 
Configurable Logic Blocks (CLBs) with Look 
up tables (LUTS) and D-Flip-flops. 

N-input LUTS can implement any n-input Boolean function 

Array embedded within the periphery of 10 blocks 

Array elements interleaved with routing 
resources (wire segments, switch matrIX and 
single connection points) 

Employs SRAM technology 

CLB 

/O block 

CLB 

CLB 

Hornzontal 
Routing 
Channel 

CLB 

CLB 

CLB 

CLB 

CL8 

CIA 

Vertical Routing 
Channel 

Tc Virtex-4 FPGA slice includes: 

Fig.1. Generic Xilinx Architecture 

The elementary programmable logic block in Xilinx FPGAs is called slice. |3j 

Two 4-input LUTs that can mplement any 4 
input Boolean function. used as combinational 

4-Input 
LUT 
(G) 

4-input 
LUT 

tunction generators (one LUT is marked "F 
the other one is marked "G"). 

The simplified diagram of a Virtex-4 slice is 
presented below in Fig. 2. 

(F) 

Two dedicated user-controlled multiplexers 
for combinational logic (MUXF5 and, 
MUXFX). MUXFS can be used to combine 
outputs of the slice's LUTS and so to 
implement 5-input combinational circuit. 
MUXFX is used to comb1ne outputs of the 
other MUXFS and MUXFX (from the other 

slices). 

Dedicated arithmetic logic (two |-bit adders. 
carry chain and two dedicated AND gates for 
fast and efficient multiplication). 

Two 1-bit registers that can be configured 
either as flip-flops or as latches. YMUX and 
XMUX multiplexers select the input to these 
registers. Note that these multiplexers aren't 
user-controlled: the path is selected during 
FPGA programming. 

MUXFX 

MUXF5 
Arithmeticd 

I and carry! 
logic i 

YMÚX 

XMUX 

CE 
CLK 

D 

SA 

CE 
CLK 
SR 

Fig. 2. Simplified diagram of a Xilinx Virtex-4 slice 

The Virtex-5 slices include: 

Four LUTs that can be configured as 6-input LUTS With 1-bit output or 5-input LUTS with 2-bit output. 
Three dedicated user-controlled multiplexers for combinational logic (F7AMUX, F7BMUX and F8MUX). F7AMUX and F7BMUX combine outputs of the slice's LUTS to implement 7-input combinational circuits. 



LUT 

F8MUX Is Used to comb1ne outputs of the 
F7AMUX and F7BMUX. 

LUT 

Dedicated arithmetic logie (two 1-bit adders 
and a carry chain) 

The simplified diagram of a Virtex-4 slice is 
presented below in Fip 3. 

Iour L-bit registers that can he configured 
cither as flip-flops or as latches. Thc input to 
these registers is selected by AMUX DMUX 
multiplexers. Note that these multiplexers 
aren't user-controlled: the path is selected 

during FPGA programming. 
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Fig. 3. Simplified diagran of a Xilinx Virtex-5 slice 

The main differences from the previous Xilinx 
architecture are: 

Configurable 6-to-I or 5-t0-2 LUTS instead 
of 4-to- I LUTS. 

4 LUTS and 4 register bits per slice. 

Dedicated arithmetic logic circuitry doesn't 
include dedicated AND gate(3]. 

Some of the other manufacturers of programmable 
devices are: Quick Logic, Actel, Altera, Atmel, Dyna 
chip, Lucent, Motorola, Gate Field, I-cube Lattix and 
Aptix. Out of theses, Altera FPGAs (Stratix and Cyclone 
families) uses slightly different logic blocks called 
"Adaptive Logic Modules" (ALMs). ALM resources 
inciude: 

Two 4-input LUTs and four 3-input LUTs for 
combinational logic implementation. 
Dedicated arithmectic and carry logic. 

Two programmable registers. 

Cyclone is the lowest cost FPGA family (S3 -$7 
per chip) and includes maximum of 2OK logic elements 
and 300Kbits of memory. Stratix is the highest density 
FPGA with maximum of 80K logic elements, 10Mbits 
memory, PLL, DSP and DDR interface blocks. 

Actel produces Antifuse -FPGAs mainly for 
aerospace and military applications. Compared with top 
Xilinx and Altera devices, Actel FPGAs provide less logic 
resources. The basic building block for Actel flash-based 
FPGAs (such as ProASIC-3 ) is called VersaTile. Each 
VersaTile cell can implement any of the following: 

2. 

" Any 3-input combinational logic function, OR 

"D flip-flop or latch. 

One VersaTile can implement only one of these, 
not both. 

After having a broad picture of architectures of 
main FPGA slices, let us have the overview of the 
development stages/steps involved in designing FPGA. 

DEVELOPMENT STAGES OF FPGA 

Regardless of the final product, FPGA designer 
has to follow the following four basic FPGA development 
stages as shown in Fig. 4: 

Design 

Synthesis 

Design 
Implementation 

Design 
Simulation 

Fig. 4. Development stages of FPGA 
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2.1 Design 

The design process involves conversion of 
requirements into a format that represents the desired 
digital function(s). Common des1gn fornats are 
schematic capture, hardware description language (HDL) or a combination of the two. Each method has its advantages and disadvantages but HDLs generally offer the greatest design flexibility. 

4 

2.1.1 Schematic capture: Schematic capture is a graphical depiction of a digital design and shows the actual interconnection between each logic gate that 
produces the desired output function(s). Many of these logic gale symbols involve proprietary information that Is available to the designer only through the specific vendor's component library. It makes the design vendor dependent. Examples of schematic capture tools are Viewlogic's View- Draw and HDL's EASE. The main advantage of schematic capture is that the graphical representation is easy to understand. But its major drawback is an increase in cost and time to reproduce a design for different vendors due to the design's proprietary nature. 

2.1.2 HDL method: Hardware description languages (HDLs) use code to represent digital functions. 'Firmware" often refers to the resulting HDL code. HDLs are a common and popular approach to FPGA 
design. One can create the source code with any text editor. Specia! HDL editors like Code Wright and Scriptun (a free HDL text editor by HDL Works) offers features 
such as HDL templates and highlighting reserved words not found in ordinary text editors. HDLs can be generic 
(supported by multiple simulation and synthesis too! 
sets) like Verilog or VHDL (Very High Speed IC HDL), 
or vendor specific like Altera's Hardware Description 
Language (AHDL), which is only recognizable by 
Altera's design tool set. There are two writing styles 
for HDL designs: structural or behavioral. 

Structural firmware is the software equivalent of 
a schematic capture design. Like schematic capture, a 
structural design uses vendor specific components to 
construct the desired digital functions. This type of HLD 
firmware is again vendor dependent like its graphicai 

counterpart and has the same disadvantages. 

Behavioral HDL firmware describes digitai 
functions in generic or abstract terms that are generally 
vendor independent. This provides enough flexibility for 
code reuse in different vendor's FPGAs with little or 
no code modification. Behavioral designs have 
advantages of its flexibility and time and cost-savings. 
and it offers little to no vendor dependence. Only those 

components are required to be changed for designs that 
require vendor specific resources, such as RAM. VHDL 
and Verilog are the most popular HDL languages. VHDL 
files consist of threc main parts: 

Library declaration 

i) 

Entity declaration, and 

Architecture section 

An optional heading section, containing pertinent 
information, such as the designer's name, filename, a 
brief summary of the code, and a revision history, which 
otherwise is not required for VHDL should also be 
included. 

Library declaration - The library declaration is 
the first section in the source file. This is where 
one places the library and package call-out 
statements. Libraries and packages define and store 
components, define signal types, functions, 
procedures, and so forth. Packages and libraries 
are standardized, such as the IEEE library, and 
also defined by a user (designer) or vendor. Once 
all the libraries and packages are visible, this section 
is complete. 

ii) Entity declaration - The entity declaration section 
immediately follows the library deciaration. Each 
entity has an assigned name. This section makes 
the I/Os visible to other source files and the design 
and can represent the I/Os as physical FPGA pins. 
VHDL designs can contain one source file or a 
hierarchy of multiple files. Hierarchical fiie 
structures consist of several files connected 
through the signals declared in their entities. 

iii) Architecture section The architecture section 
is the body of the VHDL source code and contains the circuit description. The libraries, packages, and signals work together to develop the desired functions. The format for declaring the architecture is the reserved word Architecture followed by its name. Moreover, signals not defined in the entity section are defined in this section. 
The reserved word Begin signifies the start of the next subsection, which combines the concurrent and sequential statements. Concurrent statements update or change value at anytime. The architecture section closes by using the reserved word End followed by the architecture's name. 

2.2 Simulation 

Once the design is complete, there are two options available: a) simulate and then synthesizc b) synthesize 



and then simulate. There isn'ta hard and fast rule stating 
that one mus simulate befoe synthesis. There arc 

advantages to cach option, and designers must determine 
which step is most beneticial. In fact, there may be 
times when a designer decided to simulate following 
the connpletion of the iniial desipgn while another lime 
decide to synthesize. Each option lets the designer detect 
and correct different types of errors. Simulating the 

design prior to synthesis allows logic errors and design 
flaws to be resolved early in the developnment process. 
Synthesizing lets the designer resolve synthesis errors 
ior to logic errors and design flaws. Ideally, the 
designer would perform minimal simulation, leaving the 
more stringent testing to a code tester. 

Simulation is an act of verifying the HDL or 
graphical digital designs prior to actual hardware 
validation. The circuit's input-signal characteristics are 
described in HDL or in graphical terms that are then 
applied to the design. This lets the code tester observe 
the outputs' behavior. It may be necessary to modify 
the source code during simulation to resolve any 

discrepancies, bugs, or errors. Simulation inputs or 
stimulus are inputs that mimic realistic circuit I/Os. 
Stimulus forces the circuit to operate under various 
conditions and states. The greatest benefit of stimulus 
is the ability to apply a wide range of both valid and 
iraidinput signaB charaeteristics, test circuik limits, 
vary signal parameters (such as puise width and 
frequency), and observe output behavior without 
damaging hardware. Stimulus can be applicd to the 
design in either HDL or graphical/waveform format. 
Generally, it is referred to applying stimulus to the design 
in the form of HDL. 

Some popular simulators are Mentor Graphics 
ModelSim, Aldec's Riviera, and Altera 's Quantus i. 

There are three levels of simulation: 

Register transfer level (RTL) 

Functional, and 

Gate level 

Each occurs at a specific place in the development 
process. 

The initial simulation performed immediately after 
the design stage is the RTL Simulation and it only 
verifies that the logic is correct. No realistic timing 
information is available to the simulator. The only timing 
information that can be available to the simulator is tester 

generated. Much like input stimulus, a tester can insert 
simulatcd or injected delays into the original HDL design. 

Applying test stinmulus to the synthcs1zed or optimized 
netlist produced by a synthesis tool is a functional 
simulation. Optimmzed neists produced by non 
vendors apply estimated delays that produce more 
realistic simulation output results The main benefit of 
performing functional simulatuon is thatt lcts the lester 

verify that the synthesis process hasn't chanped the 
design. Many, but not all, third-party smulation tools 
accept post synthesis netlists. Gate-level sinulation 
involves applying stimulus to the netist crcated by the 
implemcntation process. Al internal tining delays are 
included in this netlist, which provides the tester with 
the most accurate design output. Many third party 
simulation tools can perform ate simulation. ldeally, 
cach level of simulation is performed at the appropriate 

development stagc. 

Each simulation level offers vatious benefits. RTIL 

uncovers logic crrors, the functional level verifies that 
the pre- and post-synthesis designs are cquivalent, and 
the gate level uncovers timing errors. Opting to omit 
simulation and testbenching will generally cost the 
project additional tinne and money. Simulation is valuable 
and as a guideline, at least 2 times the number of hours 
spent writing the code should be spent developing and 
testing the code. 

2.3 Synthesis 

Synthesis is the process that reduces and optimizes 
the HDL or graphical design logic. Some third-party 
synthesis tools are available as a part of the FPGA 
vendor's complete development package. Synplicity's 
Synplify and Mentor Graphics' Lconardo Spectrum, 
Precision RTL, and Precision Physical are examples of 
third-party synthesis tools. Xilinx offers ISE Projcect 
Foundation, which is a complete devclopment 
application that includes a synthesis tool. Alera has 
Quartus II Integrated Synthesis, QIS. 

Although some FPGA vendors offer synthesis, they 
still recommend using a third-party's synthesis tools. 
The synthesis tool must be set up prior to actually 
synthesizing the design. FPGA information includes the 
vendor's name, the specific par or family, the package 
type, and the speed. The synthesis process takes this 
information and the user-defined cOnsraints and 

produces the output netlist. A constraints file spccifies 
information like the critical signal paths and clock 
speeds. After completing setup, synthess can begin. 
General synthesis flow for tools like Synplicity's 
Synplify involves three steps, creating structural element, 
optimizing, and mapping. Figure 5 shows a synthesis 
flow diagram. 

MR International Journal of Engineering and Technology, Vol. 2, No. 1, June 2010 



Design 

Structural 

Elements 

6 

RTL Flow 

Synthesis Process 

Optimizing 

Netlist 

Mapping 

Technology 
View 

Fig. 5. Design synthesis flow diagram 

The first step in the synthesis process is to take 
the HDL design and compile it into structural clements 
followed by optimizing the design that makes it smaller 
and faster by removing unnecessary logic and allowing 
signals to arrive at the inputs or output faster. The goal 
of the optimizing process is to make the design perform 
better without changing the circuit's functions. The final 
step involves mapping or associating the design to the 
vendor specific architecture. The mapping process lakes 
the design and maps or connects it using the architecture 
of the specific vendor. This means that the design 
connects to vendor specific components such as look 
up tables and registers. The optimized netlist is the output 
of the synthesis process. This netlist may be produced 
in one of several formats. Edifis a general netlist format 
accepted by most implementation tools, while .xnf 
format is specific to Xilinx and is only recognized by 
Xilinx's implementation. In addition to the optimized 
netlist, many synthesis tools like Synplify will produce 
a netlist for gate-level simulation and other report files. 
Stimulus applied to this netlist instead of the original 
HDL design produces the functional- level simulation, 
which lets the designer verify that the synthesis process 
hasn't changed the design's functions. 

2.4 Design implementation (Place and Route+ Bit 
Stream Generation) 

The final stage in the FPGA development process 
is the design implementation, also known as place and 
route (PAR). Each FPGA vendor has its own 
implementation tool, such as Xilinx's has Project 
Navigator and Altera's has Quartus II's. If the FPGA 
vendor has a complete development tool, meaning it can 
perform synthesis, and the design is synthesized using 
this tool, little or no setup is required for PAR. However, 
if a third-party synthesis tool is used, the implementation 
tool must be set up, which involves directing the PAR 
tool to the synthesized netlist and possibly a constraint 
file. The constraint file contains information such as 
maximum or minimum timing delays for selected 

signal(s) and I/0 pin assignments. Pin assignments can 
be automatic (performed by the tool) or manual (dictated 
by the designer). Automatic pin assignment is generally 
the best option for ncw designs, as it lets the tool more 
effectively route the design without having fixed pin 
assignments. It may be nccessary to manually assign 
signals to specific pins to achicve casy board routing, 
to provide the minimum signal route for timing-critical 
signals, or be compatible with legacy designs. There 
are numerous reasons why manual pin assignments 
would be necessary. 

But regardless of the reason, the designer must 
make this informatioH available to the PAR tool, which 
1s done by creating a user constraint file that's used by 
the PAR tool. After completing setup, the PAR process 
can begin. Xilinx's Foundation or Project Navigator 
performs design implementation in three steps: translate, 
fit, and generate programming file. Translate, involves 
verifying that the synthesized net list is consistent with 
the selected FPGA architecture and there are no 
inconsistencies in the constraint file. Inconsistencies 

would consist of assigning two different signals to the 
same pin, assigning a pin to a power or ground pin, or 
trying to assign a non-existing design signal to a pin. In 
such cases the translate step will fail and the 
implementation process will be stopped. Translate errors 
must be corrected before advancing to next step of fit 
stage. This step involves taking the constraints file and 
netlist and distributing the design logic in the selected 
FPGA. If the design is too large or requires more 
resources or available logic than the selected device 
offers, the fitter will fail and halt the implementation 
process. To correct this type of error, the current FPGA 
is replaced with a larger one and is re synthesized, and 
PAR is repeated for the design. A successful fit stage is 
necessary to proceed to generate the programming file 
stage. The final step is to generate the programming file, which can be stored in flash memory, PROMs, or 
directly programming into the FPGA. This process is 
also called Bit Stream Generation. Joint Test Action 
Group (JTAG) and third-party programmers like Data 
I/O are the two programming methods that are used to 
store the programming file in memory. The ppropriate 
format depends on the FPGA vendor, the programming method and the device used to hold the programming. In addition to the implementation process creating the 
programming file, there are several output report files 
created, such as a pad file which contains information 
such as signal pin assignment, part number, and part speed. 

This is how the FPGA designer completes his design process following the four development stages. 



3 ISSUES AND CHALLENGES IN FPGA BASED 
DIGITALDESIGN 

Field Programmable Gate Array (FPGA) have 
become an attractive implementation solution in the 
modern digitai systens due to its reconfigurable 
architecture, ease of design and flexibility, better 
performance and low non recurring engineering cost 
(NRE). However, following two are significant factors 
and issues of concern in FPGA design: 

" Power Consumption 

Radiation Effecis on FPGAS 

3.1. Power Consumption: Programmability of 
FPGAs result in with more loaded interconnection 

network as compared to customized circuits. As a resuit, 
pass transistors, signal buffers and other programmable 
switching structure increase the capacity load of signal 
networks over dedicated metal wires. Therefore, there 
is a significant increase in the power consumption on 
account of flexibility of FPGA as compared to other 
processing/ implementation units having fixed 

architectures and interconnections. 

There are two primarily types of power consump 
tions in FPGAs: static and dynamic{2].[7),[ 13],[ 14]. 
Static power is consumed due to transistor leakage 
whereas dynamic power is consumed by toggling nodes 
and is mainly a function of voltage, frequency, and 
effective capacitance. It is important to understand 
both types of variations under various conditions so 
that they can be properly optimized to meet the design's 
power budget. 

3.1.1 Static Power: Static power is mainly caused 
by leakage current between power supply and ground 
and consists of sub threshold leakage, reverse biased 
PN junction current, gate induced drain leakage and gate 
tunneling[8). The leakage current starts to be fairly 
significant at 90 nm for both ASICs and FPGAs and 
becomes even more challenging at 65 nm. Transistor 
leakage and hence static power varies with the following 

has parameters: Process, Voltage and Temperature. 
been revealed that static power increases dramatically 
along with shrinking transistor size. Moreover, the 
thermal characteristics also get affected significantly 
with design shrinking of features. The threshold voltage 
of the transistor that also increases the leakage needs to 
be iowered to obtain higher performance from the 
transistor. Static power and leakage are also influenced 
by core voitage and variation is approximately square 
and cube of core voltage. Static power increases 
approximately 15% with increase of only 5% of core 
voltage. Leakage is strongly influenced by the junction 

or die temperature{20]. On-chip temperature of 

processing unit may vary among the whole area. The 
maximum on-chip area is related to the chip area and 
maximum powcr dissipation. The reduction of totai 
maximum power therefore may increase the naximum 
temperature that further influences the static power. 

To reduce the transistor leakage FPGAs, Xilinx 
IC designer started to adopt the use of a third-gate oxide 
thickness (triple oxide) in the transistors of 90 nm 
Virtex-4 FPGAs. The third medium thickness oxide 
(midox) and higher threshold voltage in the portion of 
the transistors of Virtex-4 FPGAs allows a dramatic 

reduction in overal leakage compared to other FPGAs. 
Virtex-5 FPGAs continue to deploy the triple oxide 
technology in the 65 nm process node that enab!les 
significant lower leakage current and static power. 

3.1.2 Dynamic Power: Dynamic power is the 
power-consumed .during switching events in the core 
or I/Os of an FPGA. This is caused by signal transition 
at device transistors and frequency of signal transition 
is obviously related to clock frequency. In FPGA, the 
dynamic power consumption is design dependent due 
to its programmability. The factors like switching 
activity of resources, effective capacitance of resource 
and resource utilization are design dependent and 
contribute to dynamic power. Switching activity 
represents the average number of signal transition in a 
clock cycle. The effective capacitancg corresponds to 
the sumn of parasitic effect due to interconnection wires 
and transistors. FPGA architecture usually offers more 
resources than actually required to implement a 
particular design, which means some resources, are not 
used after the final chip configuration and they don't 
consume dynamic power; this is referred to as resource 
utilization. Taking all these factors into account, total 
dynamic power consumption of the device is generally 
modeled as: 

Where: 

P=v'fs,c,U, 

n is the number of toggling nodes, 

V is supply voltage, 

f is clock/toggle frequency (presumed to be fixed for 
each resource) and 

S, C, and U correspond to switching activity of 
resources, effective capacitance of resource and 
resource utilization respectively[7], [81.[ 14). 

All nodes in the FPGA consume power through a 
combination of charging transistor parasitic capacitance 
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and metal interconnect capacitance. Thelater depends 
on the length of route in FPGA, while the number of 
transistors that are switching determines the node 
capacitance. Reducng the number of switching 
transistors and minimizing routing lengths through 
tighter packing can reduce the dynamic power. The 
Virtex-5 FPGAs have lowered the gate capacitance and 
shorter intcrconncct traces that contribues to lowering 
the node capacitance by about 5% and hence lowers 
the dynamic powe. Moreover dynamic power gets 
reduced by approximately 7% in Virtex-5 FPGAs simply 
by decreasing core voltage from 1.2 V to l.0 V. Table 
1.l shows the relative dynamic power savings in Virtex 4 and Virtex-5 FPGAs as a result of reduction of 

capacitance and core voltagc. Process and temperature also cause little variation of 5-10% in dynamic 
power[20]. 

Table 1.l: Relative Dynamic Power Saving in Virtex-4 and 
Virtex-5 FPGAs 

Parameter 

Core Voltage 

Total Capacitance 

Dynamic Power 

Virtex-4 
FPGA 
90 nm 

I.2 

I.0 

.44 

Virtex-5 
FPGA 

65 nm 

1.0 

0.85 

0.85 

% of change 

-16.6% 

-15% 

-40% 

In the recent past, research efforts in reducing 
the power consumption and improving the power 
efficiency of reconfigurable FPGAS have intensified. 
Three major possible strategies for reduction of power 
consumption in FPGA are: 

By simplifying the algorithm used at system level 
By changing logic partitioning, mapping placement 
and routing at designer level, if architecture is fixed 
and 

By enhancing the operating conditions of devices 
including power supply, clock frequency and 
capacitance. 

Some of the techniques were proposed for 
reducing leakage power by disabling unused portion of 
the FPGA and by selecting polarities for logic signals at 
the input of LUTs so that they spend the majority of 
their time in the low leakage states. The proposal of 
application of voltage scaling onto the logic blocks of 
FPGA architectures was followed by the technology 
mapping technique to utiliZe this feature more efficiently 
Studies were also extended to crcate pr0gramnable dual 

Vdd architecture to operate certain blocks at either high Vdd or low Vdd[ J. Gayasen proposed to apply dual supply voltage on logic blocks and routing multiplexcrs[ 12]. Scaling down the supply voltage is a popular design techniquc and has been successful in ASICs for with dual Vdd or multi Vdd designs for power reduction| |1,(51,[ 10). Mondal proposed dual Vdd dual 
Vt routing architecture, where a fraction of routing 

tracks operate on high Vdd high Vt level while rest of 
the routing tracks operate on scaled down Vdd and 
V[ 15]. Dual voltage supplies werc provided to driving 
buffers of the routing segments as well as switch 
matrix. This architecture can also be used along 
with the earlier above-mentioned power reduction 
techniques. 
3.2 Radiation Effects 

Increased density and corresponding shrinkage of 
process geonetry has made FPGA devices more 
susceptible to failures due to external radiations. Earlier 
this has been an issue for space based system but is 
now becoming an issue for terrestrial systems in elevated 
radiation environment and commercial avionics as well. 
Radiation effects on single FPGA have system leve! 
consequences and will need to be addressed in current 
and future designs. There are two main categories of 
radiation effects that are relevant for Static Random 
Access Memory (SRAM) Field-Programnable Gate 
Arrays (FPGAs) in space: Total- Dose Effects and 
Single-Event Effects (SEEs). 

Total-Dose Effects are cumulative effects that induce degradation of clectrical parameters at the device, circuit, and system levels. They are induced by the total amount of ionizing energy deposited by photons or particles such as electrons, protons, or heavy ions. This effect is similar to sunburn to human and is dependant on the amount radiations and how long it took to accumulate the total dose. 

SEEs are induced by the passage of a single high energy proton or heavy ion through a device or a sensitive region of a microcircuit. SEEs can be eiter destructive (e.g., Single-Event Latch-up (SEL]), or non-destructive, such as the 0ccurrence of transient faults in 
combinational and sequential logic. 

The main reliability issues in radiations environment are: Single Event Latch up (SEL), Single-Event Upset (SEU) and Multiple-Bit Upset (MBU) 
Single event latch up (SEL) occurs when one of the parasitic bipolar ransistor created as a by product of CMOS fabrication process is activated by a charged 
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SEU and cuse the device 0 resct or enter 
contiguration mode and interrupts all user functionality 

mmediatelv. These cvents require complete 
reOniguration tor recovery and are known as single 
event functiona interrupts (SEFIs). 

Altered logic configuration bits are always 
persistent where the logic tunction gets changed. These 
cmors are detectable via contiguration memory readback 
and are easily repairable via partial recontiguration. 
However. the user logic will likely malfunction randomly 
during the time the logie is altered. 

Altered routing is least likely to cause a logic failure 
but is statistically most likely etfect of SEU. There is 
hugh probability hat the upset will connect thc unused 
wires and will be don't care as tar as logic is concerned. 
But as paras1tic segments are added to the design due to 
routing faults, there is a gradual rise in the devicc power 
consumption. Moreover. it will have the effect of 
degrad1ng the timing margin and finally may cause logic 
failures if not repared by prtial reconfiguration. The 
shorts and open caused due to altercd routing in the 

Wires ut1lized tr design, of course, will have immcdiate 
persistent cffect. 

Multiple-Bit Upset (MBU) 

Multiple Bit upset is an SEU that resuits in more 
than one adjacent bits flipping due to an oblique angle 
strike, lts probability steadily increases as geometries 
shrink. Use of maximum MBU distance observed is 
useful to deternine block RAM interleaving required so 

that even MBUs are able to be corrected by the Eror 
Corecting Code (ECC) 

3.2.1 Mitigation Techniques 

Using sOme redundancy techniques targeting the 
licld Programmable Gale Array (FPGA) architecture can 
protect the design at the high-level description VHDL 
or Verilog level. The most popular high-level Single 
Event Upset (SEU) mitigation technique currently used 

(0 proteet designs synthesized in the SRAM-based 
FPGAs is triple modular redundancy (TMR) 
combined with scrubbing. Xilinx has relcased the tool 
called X-TMR that automatically implements TMR into 
the uscr description[ 18]. The user himself can also 
implement TMR in his design that provides inmunity 
from a single configuration or state upset[6). However, 
duc to he high area overhcad of TMR, some alternative 
solutions have been proposed in recent years. Therefore, 
the user has the flexibility of inmplementing duplication 
and self-checking techniques insicad of TMR. These 
techniques may compromise the fault tolerance at soe 
pont, but the final result may be acceptable for a set of 
applications. In this way, it is possible to use a 
commercial FPGA part to implement the design and the 
soft error mitigation technique is applied to the design 
deseription before being synthesized in the FPGA. The 
user has the flexibility of choosing the fault-tolerant 
technique and consequently the overhcads in terms of 
area, performance, and power dissipation. One very 
important step of the design flow is the validation of 
the fault tolerance technique, which is usually done by 
fault injection. A circuit or a tool in the computer can 
modify the original bit streamn configured into the FPGA 
by flipping the bit stream bits, one at a time. This tlip 
emulates a SEU in the configuration mcmory cells. The 
output of the design under test (DUT) can be constantly 

monitored to analyze the effect of the injccted fault into 
the design. If an error is detected, this means that the 
fault-tolerant technique implemented is not robust for 
that specific fault (SEU) in that target-configuration 
memory bit. Table I.2 presents a summary of Single 
Event Effect (SEE) issues and possible SEU mitigation 

solutions{ l6]. 
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faults would eventually break the redundancy. it is 
recommended to scrub at least 10X faster than the 
worst-case SEU rate. When the FPGA is in this mode, 
an external oscillator generates the configuration clock 
that drives the FPGA and Programmable Read-Only 
Memory (PROM) that contains the "golden" bit stream. 
Al cach clock cycie, new data are available on the PROM 

data pins. The frequency that scrubbing must be 
performed depends on the particle flux and cross-section 
of the device. Xilinx Vertex devices support readback 
and configuration mode that operates on only a portion 

of the device and is known as partial readback and 
configuration| 3 ]. It allows a more efficient means of 
repairing configuration upsets. Unlike complete 
configuration, it does not reset the device and allows 
the uniterrrupted operation of the user. 

TMR Tool 

Implementing TMR is very difficult if it is done 
manualiy. A special software tool (TMRTooi) has been 
developed and fits within the Xilinx design flow. This 
tool eliminates haif-latches (weak keepers), which are 
also sensitive to SEU. This tooi has been evaiuated in 

several radiation ests, but more efforts will be required 
to ensure that it is completely effective. 

TMR does not come without a price. Obviously, 
designs are at least 3 times as large as a non-TMR 
design, and suffer from speed degradation as well. In 
paricular. feed back TMR degrades the speed of 
operation by introducing a longer feedback path. Power 
consumption is also tripled along with the logic. The 
underlying assumption of TMR is that on!ly one upset 
will occur within a given logic block. This is not always 

a good assumption 10 make. In Virtex II deVices, recent 
testing resulted in approximately .3-.5% of upsets 
causing multipie bit upsets within the device. Also, the 
scrubbing frequency defines the rate at which upsets 
can be detected - this combined with the rate of upsets 
provides the actual tolerance of the design[6]. This being 
said, a proper TMR implementation combined with fast 
scrubbing can provide better than an order of magnitude 
increase in the radiation tolerance of a given design. 

SRAM based FPGAS are widely used due to their 
density, cost, and in system programmability. However, 

another option exists in antifuse technology. In addition, 

antifuse vendors also offer rad-tolerant versions of some 
product lines, which are intrinsically resistant to SEUs 

10 a degree not available in SRAM devices. Antifuse has 
several advantages to SRAM. These one time 
programmable devices use physical shorts between metal 
routing tayers to configure their logic. Aside from being 

faster and more power efficient than comparable SRAM 
based switches, they are immune to radiation cffects. 
As can be seen from table l, this eliminates 97% of 

sensitive bits (in a device of similar density). Application 
of TMR in an antifuse part is usually less costly in 
resources, as only the state dependent logic needs to be 
triplicated. The more efficient logic switching resuits 
in lower power consumption and quieter operation that 
are important considerations in mixed mode designs. 
The main drawback of anti fuse is its one time 
programmability; it is best suited for applications where 
the initial requirements are stable and not expected to 
evolve over time. In addition, antifuse parts are not 
available in as high logic densities as SRAM devices. 

Some antifuse vendors provide rad-hard versions 
of some of their product lines. These devices are even 
more radiation tolerant than standard antifuse, with 

internal flip-flops TMRed in silicon (a device by 
Quicklogic/Aeroflex even has hardware TMRed RAM 
arrays). These devices completely remove the need to 
TMR user designs, and are suitable for the highest 
reliability requirements. However, the selection of devices 
is constrained, and is not available in the highest densities 
supported by antifuse. 

4 CONCLUSION 

Modern FPGAs are aiready at the heart of most 
iow to mid volume electronic systems, and their 
capabilities will continue to improve in the future. The 
process technology trends in FPGA manufacturing 
indicate that the leakage power will be an increasing 
important design concern for future reconfigurabie 
devices. Moreover, with the continuous shrinking of 
device geometry, the susceptibility t0 radiation upset 

will continue to grow. Upset tolerant design techniques, 
both from a system and device level, are already 
becoming a requirement for many systems. SRAM 
FPGAs, such as the XilinxX vertex series, have long been 
favoured due to their unmatched performance, density, 
and in system programmability. yielding a powerful and 
flexible solution chosen by many designers. However, 
their relatively high susceptibility to radiation upset is a 
factor to be considered in a growing number of 
envirOnments. 
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