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Abstract: Applications foir Field Programmable Gaie Array (FPGA ) technology
are substantially increasing due to its re-configurability that offers signiftcent
advantages in the flexibility. Recent advances in fabrication have increased its
logic capacity as well. FPGAs are evolving at a rapid speed with improved
performance and logic density. However, high power consumption in FPGAs
becomes a significant jfacior in the design consideration. Trends in technology
scaling makes leakage power a serious concern for the designers Morcover
increased density has made these devices more susceptible to fuilure due 10
external radiations. This paper describes the generic architecture of 'PGA and
basic development stages for FPGA based digital design. Then it covers the
issues of power consumption in FPGA and proposed strategies for its optimization
and fimishes with the description of radiation effects on FPGAs and the proposed
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1. INTRODUCTION

Digital designer has various options of using SSI
(small-scale integrated circuits) or MSI (medium scale
integrated circuits) components, simple programmable
logic devices, Microprocessor/ Microcontroller, Masked
Programmable Logic Devices (MPGA), CPLD, ASICs,
FPGA etc. In SST and MST difficulties arises as design
size increases and moreover interconnections grow with
complexity resulting in a prolonged testing phase.
Programmable Devices (PLDs) include
programmable array logic (PAL) and programmable
logic array (PLLA) wherein architecture are not scalable.
power consumpuion and delays play an important role
in extending the architecture to complex designs and
implementation of larger designs leads to same difficulty
as that of discrete components. The next stage of
sophistication resulted in Complex PLDs (CPLDs),
which were nothing else than collection of muitiple PLDs
with programmable 1nterconnections. Microprocessors
and microcontrollers provide a flexible computing
platform and capable of executing a large class of
applications. They have fixed hardware and can be
programmed as per their capabilities and limitations.
Application Specific Integrated Circuits (ASICs) are
designed for specific applications and have fixed
functionality and superior performance for a highly
restricted set of applications. A quest for high capacity
1s met with two choices: one with Masked
Programmable Logic Devices (MPGA) which is
customized during fabrication. low volume expensive
and has prolonged time-to-market and high financial
risk and other with Field Programmable Logic Devices
(FPGA) which s customized by end user. implements

fLogic

mitigation techniques.

multi-level logic function and has fast time to market
and low risk.

FPGA 15 a iwo dimensional array of customizable
logic block placed in an interconnect array. It is
programmable at users’ site like PLD and implements
thousands of gates of logic in a single device like MPGA.
[t employs logic and interconnect structure capable of
implementing multi-level logic and is scalable in
proportion with logic removing many of the size
iimitavions of PLD derived two level architecture.
Therefore 1t offers the benefit of both MPGAs and PL.Ds.
It is based on the principle of functional compleieness.
Functionally complete elements (Logic Blocks) are
placed 1n an interconnect framework which comprises
of wire segments and switches and provide a means (o
interconnect logic blocks. Its interconnection
framework circuits are partitioned to logic block size,
mapped and routed.

FPGAs now deliver ASIC-like density and
performance, while their flexibility and operational
characteristics offer distinct advantages over their ASIC
counterparts. As innovative architectures with embedded
processors, memory blocks and Digital Signal
Processors (DSPs) emerge; designers are turning more
towards FPGAs for new system on chip (SoC) designs.
I the design time in case of FPGA is 9 months, then it
takes approximately 2-3 years in case of ASIC for the
same design. Moreover, high initial ASIC cost 1s
recovered only in very high volume products. Due o
Moore’s law, many ASIC market requirements are now
met by FPGAs. Use of FPGAs as a % of logic market
has increased from 10 to 22% in past 3-4 years. FPGAs
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(or programmable Togie) are the fastest growing segment

ol the sennconductor industry

The architecture of various FPGAs differs from
vendor o vendor and is characterized by structure and

content of logic block
Virtex-5

Generie Xilinx Architecture consists of*

* Symmetric Array based; Array consists of
Configurable Logic Blocks (CLBs) with Look

up tables (LUTSs) and D-Flip. flops.

*  Nanput LUTs can implement any n-input

Boolean function

* Array embedded within the periphery of 10

blocks

* Array elements interleaved with routing

resources (wire segments, switch matrix and
single connection points)

* LEmploys SRAM technology

and of routing resources. Just to
examine, we will look at FPGA: Xilinx Virtex-4 and

Th

presented below in Fig. 2.
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the other one 1s marked “G7). v

Two dedicated user-controlled mulliplexcrsR "
for combinational logic (MUXFS and
MUXFX). MUXF5 can be used to cmnhmcqu
outputs of the shece's LUTs and so 4“)‘\
implement 5-input combinational circuit, ='h
MUXFX 1s used to combine outputs of lhck
other MUXFS and MUXFX (from the other A
slices) '
Dedicated arithmetic logic (two 1-bit adders. ‘w‘
carry chain and (wo dedicated AND gates foi

fast and efficient multiplication).

|
Two 1-bit registers that can be configured

either as flip-flops or as latches. YMUX and ‘
XMUX multiplexers select the input to (hese ~
registers. Note that these multiplexers aren’t
user-controlled: the path is selected during
FPGA programming.

e simplified diagram of a Virle,\—-’lA slice 1s

e

~-
oo oo -} <.
O 0 » -
CLB cLe CLB 4-input N
(] O LuT o
G) o
O T
0 CLB cLe cLs c
O 0 T
4-input. o v
LuT
0 cLB CLB cLB a (F) 0
a a v
o
Y
po /D O 00 : .
Y
VO block Honzontal ( Fig. 2. Simplified diagram of a Xilinx Virtex-4 slice (\ [
Routing Vertical Routing
Channel Channel . . . 1
The Virtex-5 slices include: O
Fig.1. Generic Xilinx Architecture
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The virtex-4 FPGA shice includes:

¢ Two 4-input LUTSs that can implement any 4-
mput Boolean function. used as combinational

Three dedicated user-controlled multiplexers
for combinational logic (FTAMUX, F7BMUX
and FSMUX). F7IAMUX and FIBMUX
combine outputs of the shice’s LUTs to
implement 7-input combinational ¢ircuits.
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FEMUX 1 used to combine outputs of the
FTAMUX and FTBMUX

e Dedicated arithmetic logic (two |-bit adders
and a carry chan)

e Tour 1-bit registers that can be configured
cither as fMlip-Mlops or as katches. The input 1o
these registers is selected by AMUX DMUX
multiplexers. Note that these multiplexers
aren’'t user-controlled: the path 1s selected
during FPGA programming.

The simphified diagram of a Virtex-4 shice 14
presented below m Fap 3.
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Fig. 3. Simplified diagram of a Xilinx Virtex-5 slice

The main differences from the previous Xilinx
architecture are:

¢ Configurable 6-to-1 or 5-to-2 LLUTs instead
of 4-to-1 LUTs.

e 4 LUTs and 4 register bits per slice.

e Dedicated arithmetic logic circuitry doesn’t
include dedicated AND gate[3].

Some of the other manufacturers of programmable
devices are: Quick Logic, Actel, Altera, Atmel, Dyna
chip, Lucent, Motorola, Gate Field, I-cube Lattix and
Aptix. Outof theses, Altera FPGAs (Stratix and Cyclone
families) uses slightly different logic blocks called
“Adaptive Logic Modules™ (ALMs). ALM resources
mnclude:

¢ Two danput LUTs and four 3-input LUTSs for
combimational logic implementation.

Dedicated arithmetic and carry logic.
e  Two programmable registers.

Cyclone is the lowest cost FPGA family (83 -$7
per chip) and includes maximum of 20K logic elements
and 300Kbits of memory. Stratix is the highest density
FPGA with maximum of 80K logic elements, 10Mbits
memory, PLL, DSP and DDR interface blocks.

Actel produces Antifuse-FPGAs mainly for
acrospace and military applications. Compared with top
Xilinx and Altera devices, Actel FPGAs provide less logic
resources. The basic building block for Actel flash-based
FPGAs (such as ProASIC-3) 1s called VersaTile. Each
VersaTile cell can implement any of the following:

* Any 3-input combinational logic function, OR
= D flip-flop or latch.

One VersaTile can implement only one of these,
not both.

After having a broad picture of architectures of
main FPGA slices, let us have the overview of the
development stages/steps involved in designing FPGA.

2. DEVELOPMENT STAGES OF FPGA

Regardless of the final product, FPGA designer
has to follow the following four basic FPGA development
stages as shown in Fig. 4:
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Implementation

Fig. 4. Development stages of FPGA

* Design
¢ Simulation
e Synthesis

¢ DesignImplementation (Place and Route + Bit
Stream Generation)
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2.1 Design

The design process involves conversion of
requirements mnto « format that represents the desired
digital function(s). Common destpgn formats are
schematie capture, hardware description language
(HDL). or a combination of the two. Each method has
1ts advantages and disadvantages but HDIg gencerally

ofter the greatest design flexibility.

2.1.1 Schematic capture: Schematic capture is a
graphical depiction of a digital design and shows the
actual interconnection between each logic gate that
produces the desired output function(s). Many of these
logic gate symbols involve proprietary information that
'8 available to the designer only through the specific
vendor’s component library. It makes (he design vendor
dependent. Examples of schematic capture tools are
Viewlogic’s View- Draw and HDL’s EASE. The main
advantage of schematic capture 1s that the graphical
representation is easy to understand. But its major
drawback is an increase in cost and time (o reproduce a
design for different vendors due to the design’s
proprietary nature.

2.1.2 HDL method: Hardware description
languages (HDLs) use code to represent digital functions.
“Firmware” often refers to the resulting HDL code.
HDLs are a common and popular approach to FPGA
design. One can create the source code with any text
editor. Special HDL editors like CodeWright and Scripuum
(a free HDL text editor by HDL Works) offers features
such as HDL templates and highlighting reserved words
not found in ordinary text editors. HDLs can be generic
(supported by multiple simulation and synthesis tool
sets) like Verilog or VHDL (Very High Speed IC HDL),
or vendor specific like Altera’s Hardware Description
Language (AHDL), which is only recognizable by
Altera’s design tool set. There are two writing styles
for HDL designs: structural or behavioral.

Structural firmware is the software equivalent of
a schematic capture design. Like schematic capture, a
structural design uses vendor specific components (o
construct the desired digital functions. This type of HLD
firmware is again vendor dependent like its graphical
counterpart and has the same disadvantages.

Behavioral HDL firmware describes digital
functions in generic or abstract terms that are generally
vendor independent. This provides enough flexibility for
code reuse in different vendor’s FPGAs with little or
no code modification. Behavioral designs have
advantages of its flexibility and time and cost-savings,
and it offers htle to no vendor dependence. Only thosc

4

components are required to be changed for designs that
require vendor specific resources, such as RAM. VHDL
and Verilog are the most popular DI languages. VHDL
files consist of three main parts

e Library declaration
¢ Lntity declaration, and

e Architecture section

An optional heading section, containing pertinent
information, such as the designer’s name, filename, a
brief summary of the code, and a revision history, which
otherwise is not required for VHDL should also be
included.

i) Library declaration - The library declaration is
the first section in the source file. This is where
one places the library and package call-out
statements. Libraries and packages define and store
components, define signal types, functions,
procedures, and so forth. Packages and libraries
are standardized, such as the IEEE library, and
also defined by a user (designer) or vendor. Once
all the libraries and packages are visible, this section
is complete.

ii)  Entity declaration - The entity declaration section
immediately follows the library declaration. Each
entity has an assigned name. This section makes
the I/0s visible to other source files and the design
and can represent the 1/Os as physical FPGA pins.
VHDL designs can contain one source file or a
hierarchy of multiple files. Hierarchical fiie
structures consist of several files connected
through the signals declared in their entities.

Architecture section - The architecture section
is the body of the VHDL source code and contains
the circuit description. The libraries, packages, and
signals work together to develop the desired
functions. The format for declaring the
architecture is the reserved word Architecture
followed by its name. Moreover, signais not defined
in the entity section are defined in this section.

The reserved word Begin signifies the start of the
next subsection, which combines (he concurrent and
sequential statements. Concurrent Statements update or
change value at anytime. The architecture section cioses-

by using the reserved word End followed by the
architecture’s name.

2.2 Simulation

Once the design is complete, the

‘ - reare two options
available: a) simulate and then sy

nthesize b) synthesize
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and then simulate. There isn'ta hard and (ast rule stating,
that one must simulate before synthesis. There are
advantages to cach option, and designers must determine
which step is most beneficial. In fact, there may be
times when a designer decided o simulate following,
the completion of the initial desipn while another time
decide o synthesize. Bach option lets the designer deteet
and correct different types of errors. Simulating the
design prior o synthesis allows logic errors and design
flaws to be resolved early in the development process.
Synthesizing lets the designer resolve synthesis errors
prior o logic errors and design fiaws. Ideally, the
designer would perform minimal simulation, leaving the
maore stringent testing to a code (ester.

Simulation is an act of verifying the HDI. or
graphical digital designs prior to actual hardware
validation. The circuit’s input-signal characteristics are
described in HDL or in graphical terms that are then
applied to the design. This lets the code tester observe
the outputs’ behavior. It may be necessary to modify
the source code during simulation to resolve any
discrepancies, bugs, or errors. Simulation inputs or
stimulus are inputs that mimic realistic circuit 1/Os.
Stimulus forces the circuit to operate under various
conditions and states. The greatest benefit of stimulus
is the ability to apply a wide range of both valid and

———nvalidRput-sienal-echaracteristics, test circuid limits,

vary signal parameters (such as puise width and
frequency), and observe output behavior without
damaging hardware. Stimulus can be applied to the
design in either HDL or graphical/waveform format.
Generally, it is referred to applying stimulus to the design
in the form of HDL.

Some popular simulators are Menror Graphics’
ModelSim, Aldec’s Riviera, and Altera’s Quantus I1.

There are three levels of stmulation:

e Register transfer level (RTL)
e« Functional, and

e  Gate level

Each occurs at a specific place in the development
process.

The initial simulation performed immediately after
the design stage is the RTL simulation and 1t only
verifies that the logic is correct. No realistic timing
information is available to the simulator. The only iming
information that can be available to the simulator is tester
generated. Much like input stimulus, a tester can insert
stmulated or injected delays into the original HDL design,
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Applying test stimulus (o the synthesized o optimized
nethist produced by o synthesis tool s o functional
stmulation. Optinzed nethists produced by non

vendors apply estimated delays that produce more
cealistic simulation output results The minm benefit of
performing funcuonal symulation s that it lets the tester
verily that the synthesis process hasn't changed the
design. Many, but not all, third-party simulation tools
accept post-synthesis nethists, Gate-level simulation
mvolves applying stimulus to the nethist created by the
implementation process. Al internal timing delays are
included in this netlist, which provides the tester with
the most accurate design output. Many third party
simulation tools can perform gate simulation. ldeally,
cach level of simulation s performed at the appropriate
development stage.

Each simulation level offers vatious benefits. RTLL
uncovers logic errors, the functional level verifies that
the pre- and post-synthesis designs are equivalent, and
the gate level uncovers timing crrors. Opting (o omil
simulation and testbenching will generally cost the
project additional time and moncy. Simulation is valuable
and as a guideline, at least 2 times the number of hours
spent writing the code should be spent developing and
testing the code

2.3 Synthesis

Synthesis is the process that reduces and optimizes
the HDL or graphical design logic. Some third-party
synthesis tools are available as a part of the FPGA
vendor’s complete development package. Synplicity’s
Synplify and Mentor Graphies’ Leonardo Spectrum,
Precision RTL, and Precision Physical are examples of
third-party synthesis tools. Xilinx offers ISE Project
Foundation, which 1s a complete development
application that includes a synthesis wol. Altera has
Quartus II Integrated Synthesis, QIS.

Although some FPGA vendors offer synthesis, they
still recommend using a third-party’s synthesis tools.
The synthesis tool must be set up prior to actually
synthesizing the design. FPGA information includes the
vendor’s name, the specific part or family, the package
type, and the speed. The synthesis process takes this
information and the user-defined constraints and
produces the output nethisi. A constraints file specifies
information like the critical signal paths and clock
speeds. After completing set-up, synthesis can begin.
General synthesis flow for tools like Synphicity’s
Synplify involves three steps, creating structural element,
optimizing, and mapping.
flow diagram,

Figure 5 shows a synthesis
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Fig. 5. Design synthesis flow diagram

The first step in the synthesis process is to take

the HDL design and compile it into structural elements
followed by optimizing the design that makes it smaller
and faster by removing unnecessary logic and allowing
signals to arrive at the inputs or output faster. The goal
of the optimizing process is to make the design perform
better without changing the circuit’s functions. The final
step involves mapping or associating the design to the
vendor specific architecture. The mapping process takes
the design and maps or connects it using the architecture
of the specific vendor. This means that the design
connects to vendor specific components such as look-
up tables and registers. The optimized netlist is the output
of the synthesis process. This netlist may be produced
in one of several formats. Edifis a general netlist format
accepted by most implementation tools, while .xnf
format is specific to Xilinx and is only recognized by
Xilinx’s implementation. In addition 1o the optimized
netlist, many synthesis tools like Synplify will produce
a netlist for gate-level simulation and other report files.
Stimulus applied to this netlist instead of the original
HDL design produces the functional- level simulation,
which lets the designer verify that the synthesis process
hasn’t changed the design’s functions.

2.4 Design implementation (Place and Route+ Bit
Stream Generation)

The final stage in the FPGA development process
1s the design implementation, also known as place and
route (PAR). Each FPGA vendor has its own
implementation tool, such as Xilinx’s has Project
Navigator and Altera’s has Quartus II's. If the FPGA
vendor has a complete development tool, meaning it can
perform synthesis, and the design is synthesized using
this tool, little or no setup is required for PAR. However,
if a third-party synthesis tool is used, the implementation
tool must be set up, which involves directing the PAR
tool to the synthesized netlist and possibly & constraint
file. The constraint file contains information such as
maximum or minimum timing delays for selected
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signal(s) and 1/O pin assignments. Pin assignments can
be automatic (performed by the tool) or manual (dictated
by the designer). Automatic pin assignment is generally
the best option for new designs, as it lets the tool more
cffectively route the design without having fixed pin
assignments. It may be necessary to manually assign
signals to specific pins to achicve easy board routing,
to provide the minimum signal route for timing-critical
signals, or be compatible with legacy designs. There
are numerous reasons why manual pin assignments
would be necessary.

But regardless of the reason, the designer must
make this information available to the PAR tool, which
is done by creating a user constraint file that’s used by
the PAR tool. After completing setup, the PAR process
can begin. Xilinx’s Foundation or Project Navigator
performs design implementation in three steps: translate,
fit, and generate programming file. Translate, involves
verifying that the synthesized net list is consistent with
the selected FPGA architecture and there are no
inconsistencies in the constraint file. Inconsistencies
would consist of assigning two different signals to the
same pin, assigning a pin to a power or ground pin, or
trying to assign a non-existing design signal to a pin. In
such cases the translate step will fail and the
implementation process will be stopped. Translate errors
must be corrected before advancing to next step of fit
stage. This step involves taking the constraints file and
netlist and distributing the design logic in the selected
FPGA. If the design is too large or requires more
resources or available logic than the selected device
offers, the fitter will fail and halt the implementation
process. To correct this type of error, the current FPGA
is replaced with a larger one and is re synthesized, and
PAR is repeated for the design. A successful fit stage is
necessary to proceed to generate the programming file
stage. The final step is to generate the programming
file, which can be stored in flash memory, PROMs, or
directly programming into the FPGA. This process is
alsc called Bit Stream Generation. Joint Test Action
Group (JTAG) and third-party programmers like Data
I/0 are the two programming methods that are used (o
store the programming file in memory. The cppropriate
format depends on the FPGA vendor, the programming
method and the device used to hold the programming.
In addition to the implementation process creating the
programming file, there are several output report files
created, such as a pad file which contains information
such as signal pin assignment, part number, and part
speed.

This 1s how the FPGA designer completes his
design process following the tour development stages.
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3. ISSUESAND CHALLENGES IN FPGA BASED
DIGITALDESIGN

Field Programmable Gate Array (FPGA) have
become an attractive implementation solution in the
modern digital systems due to its reconfigurable
architecture, ease of design and flexibility, better
performance and low non recurring engineering cost
(NRE). However, following two are significant factors
and issues of concern in FPGA design:

e Power Consumption

* Radiation Effects on FPGAs

3.1. Power Consumption: Programmability of
FPGAs result in with more loaded interconnection
network as compared to customized circuits. As a result,
pass transistors, signal buffers and other programmable
switching structure increase the capacity load of signal
networks over dedicated metal wires. Therefore, there
1s a significant increase in the power consumption on
account of flexibility of FPGA as compared to other
processing/ implementation units having fixed
architectures and interconnections.

There are two primarily types of power consump-
tions in FPGAs: static and dynamic{2],[7],{13],[14].
Static power is consumed due to transistor leakage
whereas dynamic power is consumed by toggling nodes
and 1s mainl* a function of voltage, frequency,-and
eiffective capacitance. It i1s important to understand
both types of variations under various conditions so
that they can be properly optimized to meet the design’s
power budget.

3.1.1 Static Power: Static power is mainly caused
by leakage current between power supply and ground
and consists of sub threshold leakage, reverse biased
ON junction current, gate induced drain leakage and gate
tunneling[8). The leakage current starts to be fairly
significant at 90 nm for both ASICs and FPGAs and
becomes even more challenging at 65 nm. Transistor
leakage and hence static power varies with the following
parameters: Process, Voltage and Temperature. It has
been revealed that static power increases dramatically
along with shrinking transistor size. Moreover, the
thermal characteristics also get affected significantly
with design shrinking of features. The threshold voltage
of the transistor that also increases the leakage needs to
be lowered to obtain higher performance from the
transistor. Static power and leakage are also influenced
by core voitage and variation is approximately square
and cube of core voltage. Static power increases
approximately 15% with increase of only 5% of core
voltage. Leakage is strongly influenced by the junction
or die temperaturef20]. On-chip temperature of
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processing unit may vary among the whole area. The
maximum on-chip area is related to the chip area and
maximum power dissipation. The reduction of total
maximum power therefore may increase the maximum
temperature that further influences the static power.

To reduce the transistor leakage FPGAs, Xilinx
IC designer started to adopt the use of a third-gate oxide
thickness (triple oxide) in the transistors of 90 nm
Virtex-4 FPGAs. The third medium thickness oxide
(midox) and higher threshold voltage in the portion of
the transistors of Virtex-4 FPGAs allows a dramatic
reduction in overall leakage compared to other FPGAs.
Virtex-5 FPGAs continue to deploy the triple oxide
technology in the 65 nm process node that enables
significant lower leakage current and static power.

3.1.2 Dynamic Power: Dynamic power is the
power-consumed during switching events in the core
or I/Os of an FPGA. This is caused by signal transition
at device transistors and frequency of signal transition
is obviously related to clock frequency. In FPGA, the
dynamic power consumption is design dependent due
to its programmability. The factors like switching
activity of resources, effective capacitance of resource
and resource utilization are design dependent and
contribute to dynamic power. Switching activity
represents the average number of signal transition in a
clock cycle. The effective capacitancg corresponds to
the sum of parasitic effect due to interconnection wires
and transistors. FPGA architecture usually offers more
resources than actually required to implement a
particular design, which means some resources, are not
used after the final chip configuration and they don’t
consume dynamic power; this is referred to as resource
utilization. Taking all these factors into account, total
dynamic power consumption of the device is generally
modeled as:

P=V?fy's,CU,

n

Where:

n is the number of toggling nodes,
V is supply voltage,

f is clock/toggle frequency (presumed to be fixed for
each resource) and

S, C, and U correspond to switching activity of
resources, effective capacitance of resource and
resource utilization respectively[7],[8],[14].

All nodes 1n the FPGA consume power through a
combination of charging transistor parasitic capacitance
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and metal interconnect capacitance. The later d(‘p(‘nds‘
on the length of route 1n FPGA, while the number of
transistors that are switching determines the node
capacitance. Reducing the number of switching
transistors and mrimizing routing lengths throuph
tighter packing can reduce the dynamic power. The
V;I’IC\—S FPGAs have lowered the pate capacitance and
shorter interconnect traces that contributes (0 In\\'L‘lin;’,
and hence lowers
the dynamic power. Morcover dynamic power gets
reduced by approximately 17% in Virtex-5 FPGAs simply
by decreasing core voltage from 1.2 Vo 1.0 V. Table
I.1 shows the relative dynamic power savings in Virtex-
4 and Virtex-5 FPGAs as a result of reduction of
capacitance and core voltage. Process and temperature
also cause little variation of 5-10% in dynamic
power[20].

the node capacitance by about 15%

Table 1.1: Relative Dynamic Power Saving in Virtex-4 and
Virtex-5 FPGAs

—_—
Parameter | Virtex-4 Virtex-5 % of change
FPGA | FPGA
) 90 nm 65 nm
_— _,T -
Core Voltage 1.2 1.0 -16.6%
Total Capacitance L0 | 085 -15%
Dynamic Power J44 ] 0.85 -40%
—

In the recent past, research efforts in reducing
the power consumption and improving the power
efficiency of reconfigurable FPGAS have intensified.
Three major possible strategies for reduction of power
consumption in FPGA are:

- By simplifying the algorithm used at system level

By changing logic partitioning, mapping placement
and routing at designer level, if architecture is fixed
and

By enhancing the operating conditions of devices
including power supply, clock frequency and
capacitance.

Some of the techniques were proposed for
reducing leakage power by disabling unused portion of
the FPGA and by selecting polarities for logic signals at
the input of LUTs so that they spend the majority of
their ume in the low leakage states. The proposal of
application of voltage scaling onto the logic blocks of
FPGA architectures was followed by the technology
mapping technique to utilize this feature more clficiently
Studies were also extended (o create programmable dual
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Vdd architecture to operate certain blocks at either high
Vdd or low Vdd[11]. Gayasen proposed to apply dual
supply voltage on logic blocks and routing
multiplexers[12]. Scaling down the supply voltage is a
popular design technique and has been successful in
ASICs for with dual Vdd or multi Vdd designs for power
reductionf 1,(5],(10]. Mondal proposed dual Vdd dual
Vi routing architecture, where 2 fraction of routing
tracks operate on high Vdd high Vit level while rest of
the routing tracks operate on scaled down Vdd and
VI[15]. Dual voltage supplies were provided to driving
buffers of the routing segments as well as switch
matrix. This architecture can also be used along
with the earlier above-mentioned power reduction
techniques.

3.2 Radiation Effects

Increased density and corresponding shrinkage of
process geometry has made FPGA devices more
susceptible to failures due to external radiations. Earlier
this has been an issue for space based system but is
now becoming an issue for terrestrial systems in elevated
radiation environment and commercial avionics as well.
Radiation effects on single FPGA have system level
consequences and will need to be addressed in current
and future designs. There are two main categories of
radiation effects that are relevant for Static Random

-

- A A A

1

Access Memory (SRAM) Field-Programmable Gate

Arrays (FPGAs) in space: Total- Dose Effects and
Single-Event Effects (SEEs).

Total-Dose Effects are cumulative effects that
induce degradation of electrical parameters at the device,
circuit, and system levels. They are induced by the total
amount of 1onizing energy deposited by photons or
particles such as electrons, protons, or heavy ions. This
effect is similar to sunburn to human and is dependant
on the amount radiations and how long it took to
accumulate the total dose.

SEEs are induced by the passage of a single high
energy proton or heavy ion through a device or a sensitive
region of a microcircuit. SEEs can be eitaer destructive
(e.g., Single-Event Latch-up [SELD), or non-destructive,
such as the occurrence of transient faults in
combinational and sequential logic.

The main reliability issues in radiations environment
are: Single Event Latch up (SEL), Single-Event Upset
(SEU) and Multiple-Bit Upset (MBU)

Single event lateh up (SEL) occurs when one
ol the parasitic bipolar transistor created as a by product
of CMOS fabrication process is activated by a charged
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Altered logic configuration bits are always
nersistent where the logie tunction gets changed. These
crrors are detectable via configuration memory readback
and are casily reparable via parual reconfiguration.
However, the user logre will likely malfunction randomly

Jduring the tme the logic s altered.

Altered routing 1s least likely (o cause a logic failure
but 1s staustcally most likely eftect of SEU. There is
high probability that the upset will connect the unused
wires and will be don't care as far as logic 1s concerned.
But as parasitic segments are added to the design due to
routing faults, there 1s a gradual nise n the device power
consumption it will have the effect of
degrading the tming margin and finally may cause logic

Moreover.

tatlures if not repared by partial reconfiguration. The
shorts and open caused due to altered routing in the

wires utithized tor desipn, of course, will have mmmediate
persastent elfect

Multiple-Bit Upset (MBU)

Multiple Bit upset 1s an SEU that results in more
than one adjacent buts {lipping due (o an oblique angle
strike. Hs probabihity steadily increases as geometrics
shoink Use of maximum MBU distance observed is
useful to determine block RAM interleaving required so
that even MBUS are able to be corrected by the Error
Correcting Code (ECO)

3.2.1 Mitigation Techniques

Using somie redundancy techniques targeting the
ield-Programmable Gate Array (FPGA) architecture can
protect the design at the high-level description VHDL
or Verilog level. The most popular high-level Single-
Event Upset (SEU) mitigation technigque currently used
(o protect designs synthestzed in the SRAM-based
FPGAs s triple modular redundancy (TMR)
combined with scrubbing. Xilinx has released the tool
called X-TMR that automatically implements TMR into
the user description[ 18], The user himself can also
umplement TMR 1 his design that provides immunity
from a single configuration or state upset{6]. However,
due to the high area overhead of TMR, some alternative
solutions have been proposed in recent years. Therefore,
the user has the flexibility of implementing duplication
and self-checking technigues instead of TMR. These
techniques may compromise the fault tolerance at some
point, but the final result may be acceptable for a set of
applications. In this way, it is possible to usc a
commercial FPGA part to implement the design and the
soft error mitigation technique is applied to the design
description before being synthesized in the FPGA. The
user has the flexibility of choosing the fault-tolerant
technique and consequently the overheads in terms of
area, performance, and power dissipation. One very
important step of the design flow is the validation of
the tault tolerance technique, which is usually done by
fault injection. A circuit or a tool in the computer can
modity the original bit stream configured into the FPGA
by flipping the bit stream bits, one at a time. This flip
emulates a SEU in the configuration memory cells. The
output of the design under test (DUT) can be constantly
monitored to analyze the effect of the injected fault into
the design. If an error is detected, this means that the
fault-tolerant technique implemented is not robust for
that specific fault (SEU) in that target-configuration
memory bit. Table [.2 presents a summary of Single-
Event Effect (SEE) 1ssues and possible SEU mitigation
solutions| 16].
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faults would eventually break the redundancy. It is
recommended to scrub at least 10X faster than the
worst-case SEU rate. When the FPGA is in this mode,
an external oscillator generates the configuration clock
that drives the FPGA and Programmable Read-Only
Memory (PROM) that contains the “golden” bit stream.
Atcach clock cycle, new data are available on the PROM
data pins. The frequency that scrubbing must be
performed depends on the particle flux and cross-section
of the device. Xilinx Vertex devices support readback
and configuration mode that operates on only a portion
ot the device and is known as partial readback and
configuration|3]. It allows a more efficient means of
repairing configuration upsets. Unlike complete
configuration, it does not reset the device and allows
the uniterrrupted operation of the user.

¢)  TMR Tool

Implementing TMR is very difficult if it is done
manualiy. A special software tool (TMRTool) has been
developed and fits within the Xilinx design flow. This
tool eliminates hulf-latches (weak keepers), which are
also sensitive to SEU. This tool has been evaiuated in
several radiation tests, but more efforts will be required
to ensure that it is completely effective.

TMR does not come without a price. Obviously,
designs are at least 3 times as large as a non-TMR
design, and suffer from speed degradation as well. in
particular. feedback TMR degrades the speed of
aperation by introducing a longer feedback path. Power
consumption is also tripled along with the logic. The
vnderlying assumption of TMR is that only one upset
will occur within a given logic block. This is not always
1 good assumption 1o make. In Virtex Il devices, recent
testing resulted in approximately .3-.5% of upsets
causing multiple bit upsets within the device. Also, the
-crubbing frequency defines the rate at which upsets
can be detected — this combined with the rate of upsets
arovides the actual tolerance of the design[6]. This being
waid, a proper TMR implementation combined with fast
scrubbing can provide better than an order of magnitude
increase in the radiation tolerance of a given design.

SRAM based FPGAs are widely used due to therr
density, cost, and in system programmability. However,
snother option exists in antifuse technology. In addition,
sntifuse vendors also offer rad-tolerant versions of some
sroduct lines, which are intrinsically resistant to SEUs
a degree not available in SRAM devices. Antifuse has
ceveral advantages to SRAM. These one time
srogrammable devices use physical shorts between metal

Huting fayers to configure their logic. Aside from being

{aster and more power efficient than comparable SRAM
based switches, they are immune to radiation cffects.
As can be seen from table I, this climinates 97% of
sensitive bits (ina device of similar density). Application
ol I'MR in an antifuse part is usually less costly in
resources, as only the state dependent logic needs to be
triplicated. The more efficient [ogic switching results
in lower power consumption and quieter operation that
are important considerations in mixed mode designs.
The main drawback of antifuse is its one time
programmability; it is best suited for applications where
the initial requirements are stable and not expected to
evolve over time. In addition, antifuse parts arc not
available in as high logic densities as SRAM devices.

Some antifuse vendors provide rad-hard versions
of some of their product lines. These devices are even
more radiation tolerant than standard antifuse, with
internal flip-flops TMRed in silicon (a device by
Quickiogic/Aeroflex even has hardware TMRed RAM
arrays). These devices completely remove the need to
TMR user designs, and are suitable for the highest
reliability requirements. However, the selection of devices
is constrained, and is not available in the highest densities
supported by antifuse.

4. CONCLUSION

Modern FPGAs are already at the heart of most
low to mid volume electronic systems, and their
capabilities will continue to improve in the future. The
process technology trends in FPGA manufacturing
indicate that the leakage power wiil be an increasing
important design concern for future reconfigurabic
devices. Moreover, with the continuous shrinking of
device geometry, the susceptibility to radiation upset
will continue to grow. Upset tolerant design techniques,
both from a system and device level, are already
becoming a requirement for many systems. SRAM
FPGAs, such as the Xilinx vertex series, have long been
favoured due to their unmatched performance, density,
and in system programmability, yielding a powerful and
flexible solution chosen by many designers. However,
their relatively high susceptibility to radiation upset is a
factor to be considered in a zrowing number of
environments.
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