
Naresh Grover
Faculty of Eng1ncering and Technology

MRIU, Faridabad

M.K. Soni

1.

Faculty of Engineering and Technology
MRIU, Faridabad

Dean

INTRODUCTION

FPGA based Digital System
Design-lssues and Challenges
Abstract: Applicatton for Feld Programmable Gate Array (FPGA) fechnology
are substantially increasing due to its re-configurability that offers significant
advantages in the flexibility. Recent advances in fabrication have increased its
logic capacity as well. FPGAs are evolving at a rapid speed with improved
performance and logic density. However, high power consumption in FPGAs
becomes a significann jactor n the design consideration. Trends in technology
scaling makes leakage power a serious concern for the designers. Moreover
increased density has made these devices more susceptible to fuilure due to
external radiations. This paper describes the generic architecture of FPGA and
basic development stages for FPGA based digital design. Then it covers the
issues of power consumption in FPGA and proposed strategies for its optimization
and finishes with the description of radiation effects on FPGAs and the proposed

mitigation techmiques.

Digital designer has various options of using SSI
(small-scale integrated circuits) or MSI (medium scale
integrated circuits) components, simple programmable
logic devices, Microprocessor/ Microcontroller, Masked
Programmable Logic Devices (MPGA), CPLD, ASICs,
FPGA etc. In SSi and MSI difficulties arises as design
SIZe increases and moreover interconnections grow with
complexily resulting in a prolonged testing phase.
Programmable Logic Devices (PLDs) include
programmable array logic (PAL) and programmable
logic array (PLA) wherein architecture are not scalable.
power consumption and delays play an important role
in extending the architecture to complex designs and
implementation of larger designs leads to same difficulty
as that of discrele components. The next stage of
sophistication resulted in Complex PLDs (CPLDs),
which were nothing eise than collection of multiple PLDs
with programmable interconnections. Microprocessors
and microcontrollers provide a flexible computing
platformn and capable of executing a large class of
applications. Thcy have fixed hardware and can be
programmed as per their capabilities and limitations.
Application Specific Integrated Circuits (ASICs) are
designed for specific applications and have fixed
functionality and superior performance for a highly
restricted set of applications. A quest for high capacity
is mel With two choices: one with Masked
Programmable Logic Devices (MPGA) which is
customized during fabricat1on. low voiume expensive
and has prolonged time-t0-market and high financial
risk and other with Ficld Programmable Logic Devices
(FPGA) which Is customized by end user, implements

multi-level logic function and has fast time to market
and low risk.

FPGA is a two dimensional array of customizable
logic block placed in an interconnect array. It is
programmable at users' site like PLD and implements
thousands of gates of logic in a single device like MPGA.
It employs logic and interconnect structure capable of
inplementing multi-level logic and is scalable in
proportion with logic removing many of the size
limitations of PLD derived two level architecture.
Therefore it offers the benefit of both MPGAs and PLDs.

It is based on the principle of functional compieteness.
Functionally complete elements (Logic Biocks) are
placed in an interconnect framework which comprises
of wire segments and switches and provide a means to
interconnect logic blocks. Its interconnection
framework circuits are partitioned to logic block size.
mapped and routed.

FPGAs now deliver ASIC-like density and
performance, while their flexibility and operational
characteristics offer distinct advantages over their ASIC
counterparis. As innovative architectures with embedded
processors, memory blocks and Digital Signat
Processors (DSPs) emerge; designers are turning more
towards FPGAs for new system on chip (SoC) designs.
If the design time in case of FPGA is 9 months, then it
takes approximately 2-3 years in case of ASIC for the
same design. Moreover, high initial ASIC cost is
recovered only in very high volume products. Due to
Moore's law, many ASIC market requirements are now
met by FPGAs. Use of FPGAs as a % of logie market
has increased from 10 to 22% in past 3-4 years. FPGAs

MR Internationai Journal of Engineering and Technology, Vot. 2, No. 1, June 2010

(or programmable logic) are the fastest growing segment of the semiconductor industry.

2

The architecture of various FPGAs differs fronm
vendor to vendor and is characterized by structure and
COntent of logc block and of routing resources. Just to
examine, we will look at FPGA: Xilinx Virtex-4 and
Virtex-5.

Generic Xilinx Architecture consists of:

Symmetric Array based; Array consists of
Configurable Logic Blocks (CLBs) with Look
up tables (LUTS) and D-Flip-flops.

N-input LUTS can implement any n-input Boolean function

Array embedded within the periphery of 10 blocks

Array elements interleaved with routing
resources (wire segments, switch matrIX and
single connection points)

Employs SRAM technology

CLB

/O block

CLB

CLB

Hornzontal
Routing
Channel

CLB

CLB

CLB

CLB

CL8

CIA

Vertical Routing
Channel

Tc Virtex-4 FPGA slice includes:

Fig.1. Generic Xilinx Architecture

The elementary programmable logic block in Xilinx FPGAs is called slice. |3j

Two 4-input LUTs that can mplement any 4
input Boolean function. used as combinational

4-Input
LUT
(G)

4-input
LUT

tunction generators (one LUT is marked "F
the other one is marked "G").

The simplified diagram of a Virtex-4 slice is
presented below in Fig. 2.

(F)

Two dedicated user-controlled multiplexers
for combinational logic (MUXF5 and,
MUXFX). MUXFS can be used to combine
outputs of the slice's LUTS and so to
implement 5-input combinational circuit.
MUXFX is used to comb1ne outputs of the
other MUXFS and MUXFX (from the other

slices).

Dedicated arithmetic logic (two |-bit adders.
carry chain and two dedicated AND gates for
fast and efficient multiplication).

Two 1-bit registers that can be configured
either as flip-flops or as latches. YMUX and
XMUX multiplexers select the input to these
registers. Note that these multiplexers aren't
user-controlled: the path is selected during
FPGA programming.

MUXFX

MUXF5
Arithmeticd

I and carry!
logic i

YMÚX

XMUX

CE
CLK

D

SA

CE
CLK
SR

Fig. 2. Simplified diagram of a Xilinx Virtex-4 slice

The Virtex-5 slices include:

Four LUTs that can be configured as 6-input LUTS With 1-bit output or 5-input LUTS with 2-bit output.
Three dedicated user-controlled multiplexers for combinational logic (F7AMUX, F7BMUX and F8MUX). F7AMUX and F7BMUX combine outputs of the slice's LUTS to implement 7-input combinational circuits.

LUT

F8MUX Is Used to comb1ne outputs of the
F7AMUX and F7BMUX.

LUT

Dedicated arithmetic logie (two 1-bit adders
and a carry chain)

The simplified diagram of a Virtex-4 slice is
presented below in Fip 3.

Iour L-bit registers that can he configured
cither as flip-flops or as latches. Thc input to
these registers is selected by AMUX DMUX
multiplexers. Note that these multiplexers
aren't user-controlled: the path is selected

during FPGA programming.

F7BMUX

MUY
Arithraetic

carry kogc

D

CLK

CLK

{D
JCLK

D
JCLK

Fig. 3. Simplified diagran of a Xilinx Virtex-5 slice

The main differences from the previous Xilinx
architecture are:

Configurable 6-to-I or 5-t0-2 LUTS instead
of 4-to- I LUTS.

4 LUTS and 4 register bits per slice.

Dedicated arithmetic logic circuitry doesn't
include dedicated AND gate(3].

Some of the other manufacturers of programmable
devices are: Quick Logic, Actel, Altera, Atmel, Dyna
chip, Lucent, Motorola, Gate Field, I-cube Lattix and
Aptix. Out of theses, Altera FPGAs (Stratix and Cyclone
families) uses slightly different logic blocks called
"Adaptive Logic Modules" (ALMs). ALM resources
inciude:

Two 4-input LUTs and four 3-input LUTs for
combinational logic implementation.
Dedicated arithmectic and carry logic.

Two programmable registers.

Cyclone is the lowest cost FPGA family (S3 -$7
per chip) and includes maximum of 2OK logic elements
and 300Kbits of memory. Stratix is the highest density
FPGA with maximum of 80K logic elements, 10Mbits
memory, PLL, DSP and DDR interface blocks.

Actel produces Antifuse -FPGAs mainly for
aerospace and military applications. Compared with top
Xilinx and Altera devices, Actel FPGAs provide less logic
resources. The basic building block for Actel flash-based
FPGAs (such as ProASIC-3) is called VersaTile. Each
VersaTile cell can implement any of the following:

2.

" Any 3-input combinational logic function, OR

"D flip-flop or latch.

One VersaTile can implement only one of these,
not both.

After having a broad picture of architectures of
main FPGA slices, let us have the overview of the
development stages/steps involved in designing FPGA.

DEVELOPMENT STAGES OF FPGA

Regardless of the final product, FPGA designer
has to follow the following four basic FPGA development
stages as shown in Fig. 4:

Design

Synthesis

Design
Implementation

Design
Simulation

Fig. 4. Development stages of FPGA

Synthesis

Register Transler

Functional

MA Internationai Journal of Engineering and Technology, Vol. 2, No. 1, June 2010

Gate -Level

M

L

A

N

Design Implementation (Place and Route+ Bit
Stream Generation)

3

2.1 Design

The design process involves conversion of
requirements into a format that represents the desired
digital function(s). Common des1gn fornats are
schematic capture, hardware description language (HDL) or a combination of the two. Each method has its advantages and disadvantages but HDLs generally offer the greatest design flexibility.

4

2.1.1 Schematic capture: Schematic capture is a graphical depiction of a digital design and shows the actual interconnection between each logic gate that
produces the desired output function(s). Many of these logic gale symbols involve proprietary information that Is available to the designer only through the specific vendor's component library. It makes the design vendor dependent. Examples of schematic capture tools are Viewlogic's View- Draw and HDL's EASE. The main advantage of schematic capture is that the graphical representation is easy to understand. But its major drawback is an increase in cost and time to reproduce a design for different vendors due to the design's proprietary nature.

2.1.2 HDL method: Hardware description languages (HDLs) use code to represent digital functions. 'Firmware" often refers to the resulting HDL code. HDLs are a common and popular approach to FPGA
design. One can create the source code with any text editor. Specia! HDL editors like Code Wright and Scriptun (a free HDL text editor by HDL Works) offers features
such as HDL templates and highlighting reserved words not found in ordinary text editors. HDLs can be generic
(supported by multiple simulation and synthesis too!
sets) like Verilog or VHDL (Very High Speed IC HDL),
or vendor specific like Altera's Hardware Description
Language (AHDL), which is only recognizable by
Altera's design tool set. There are two writing styles
for HDL designs: structural or behavioral.

Structural firmware is the software equivalent of
a schematic capture design. Like schematic capture, a
structural design uses vendor specific components to
construct the desired digital functions. This type of HLD
firmware is again vendor dependent like its graphicai

counterpart and has the same disadvantages.

Behavioral HDL firmware describes digitai
functions in generic or abstract terms that are generally
vendor independent. This provides enough flexibility for
code reuse in different vendor's FPGAs with little or
no code modification. Behavioral designs have
advantages of its flexibility and time and cost-savings.
and it offers little to no vendor dependence. Only those

components are required to be changed for designs that
require vendor specific resources, such as RAM. VHDL
and Verilog are the most popular HDL languages. VHDL
files consist of threc main parts:

Library declaration

i)

Entity declaration, and

Architecture section

An optional heading section, containing pertinent
information, such as the designer's name, filename, a
brief summary of the code, and a revision history, which
otherwise is not required for VHDL should also be
included.

Library declaration - The library declaration is
the first section in the source file. This is where
one places the library and package call-out
statements. Libraries and packages define and store
components, define signal types, functions,
procedures, and so forth. Packages and libraries
are standardized, such as the IEEE library, and
also defined by a user (designer) or vendor. Once
all the libraries and packages are visible, this section
is complete.

ii) Entity declaration - The entity declaration section
immediately follows the library deciaration. Each
entity has an assigned name. This section makes
the I/Os visible to other source files and the design
and can represent the I/Os as physical FPGA pins.
VHDL designs can contain one source file or a
hierarchy of multiple files. Hierarchical fiie
structures consist of several files connected
through the signals declared in their entities.

iii) Architecture section The architecture section
is the body of the VHDL source code and contains the circuit description. The libraries, packages, and signals work together to develop the desired functions. The format for declaring the architecture is the reserved word Architecture followed by its name. Moreover, signals not defined in the entity section are defined in this section.
The reserved word Begin signifies the start of the next subsection, which combines the concurrent and sequential statements. Concurrent statements update or change value at anytime. The architecture section closes by using the reserved word End followed by the architecture's name.

2.2 Simulation

Once the design is complete, there are two options available: a) simulate and then synthesizc b) synthesize

and then simulate. There isn'ta hard and fast rule stating
that one mus simulate befoe synthesis. There arc

advantages to cach option, and designers must determine
which step is most beneticial. In fact, there may be
times when a designer decided to simulate following
the connpletion of the iniial desipgn while another lime
decide to synthesize. Each option lets the designer detect
and correct different types of errors. Simulating the

design prior to synthesis allows logic errors and design
flaws to be resolved early in the developnment process.
Synthesizing lets the designer resolve synthesis errors
ior to logic errors and design flaws. Ideally, the
designer would perform minimal simulation, leaving the
more stringent testing to a code tester.

Simulation is an act of verifying the HDL or
graphical digital designs prior to actual hardware
validation. The circuit's input-signal characteristics are
described in HDL or in graphical terms that are then
applied to the design. This lets the code tester observe
the outputs' behavior. It may be necessary to modify
the source code during simulation to resolve any

discrepancies, bugs, or errors. Simulation inputs or
stimulus are inputs that mimic realistic circuit I/Os.
Stimulus forces the circuit to operate under various
conditions and states. The greatest benefit of stimulus
is the ability to apply a wide range of both valid and
iraidinput signaB charaeteristics, test circuik limits,
vary signal parameters (such as puise width and
frequency), and observe output behavior without
damaging hardware. Stimulus can be applicd to the
design in either HDL or graphical/waveform format.
Generally, it is referred to applying stimulus to the design
in the form of HDL.

Some popular simulators are Mentor Graphics
ModelSim, Aldec's Riviera, and Altera 's Quantus i.

There are three levels of simulation:

Register transfer level (RTL)

Functional, and

Gate level

Each occurs at a specific place in the development
process.

The initial simulation performed immediately after
the design stage is the RTL Simulation and it only
verifies that the logic is correct. No realistic timing
information is available to the simulator. The only timing
information that can be available to the simulator is tester

generated. Much like input stimulus, a tester can insert
simulatcd or injected delays into the original HDL design.

Applying test stinmulus to the synthcs1zed or optimized
netlist produced by a synthesis tool is a functional
simulation. Optimmzed neists produced by non
vendors apply estimated delays that produce more
realistic simulation output results The main benefit of
performing functional simulatuon is thatt lcts the lester

verify that the synthesis process hasn't chanped the
design. Many, but not all, third-party smulation tools
accept post synthesis netlists. Gate-level sinulation
involves applying stimulus to the netist crcated by the
implemcntation process. Al internal tining delays are
included in this netlist, which provides the tester with
the most accurate design output. Many third party
simulation tools can perform ate simulation. ldeally,
cach level of simulation is performed at the appropriate

development stagc.

Each simulation level offers vatious benefits. RTIL

uncovers logic crrors, the functional level verifies that
the pre- and post-synthesis designs are cquivalent, and
the gate level uncovers timing errors. Opting to omit
simulation and testbenching will generally cost the
project additional tinne and money. Simulation is valuable
and as a guideline, at least 2 times the number of hours
spent writing the code should be spent developing and
testing the code.

2.3 Synthesis

Synthesis is the process that reduces and optimizes
the HDL or graphical design logic. Some third-party
synthesis tools are available as a part of the FPGA
vendor's complete development package. Synplicity's
Synplify and Mentor Graphics' Lconardo Spectrum,
Precision RTL, and Precision Physical are examples of
third-party synthesis tools. Xilinx offers ISE Projcect
Foundation, which is a complete devclopment
application that includes a synthesis tool. Alera has
Quartus II Integrated Synthesis, QIS.

Although some FPGA vendors offer synthesis, they
still recommend using a third-party's synthesis tools.
The synthesis tool must be set up prior to actually
synthesizing the design. FPGA information includes the
vendor's name, the specific par or family, the package
type, and the speed. The synthesis process takes this
information and the user-defined cOnsraints and

produces the output netlist. A constraints file spccifies
information like the critical signal paths and clock
speeds. After completing setup, synthess can begin.
General synthesis flow for tools like Synplicity's
Synplify involves three steps, creating structural element,
optimizing, and mapping. Figure 5 shows a synthesis
flow diagram.

MR International Journal of Engineering and Technology, Vol. 2, No. 1, June 2010

Design

Structural

Elements

6

RTL Flow

Synthesis Process

Optimizing

Netlist

Mapping

Technology
View

Fig. 5. Design synthesis flow diagram

The first step in the synthesis process is to take
the HDL design and compile it into structural clements
followed by optimizing the design that makes it smaller
and faster by removing unnecessary logic and allowing
signals to arrive at the inputs or output faster. The goal
of the optimizing process is to make the design perform
better without changing the circuit's functions. The final
step involves mapping or associating the design to the
vendor specific architecture. The mapping process lakes
the design and maps or connects it using the architecture
of the specific vendor. This means that the design
connects to vendor specific components such as look
up tables and registers. The optimized netlist is the output
of the synthesis process. This netlist may be produced
in one of several formats. Edifis a general netlist format
accepted by most implementation tools, while .xnf
format is specific to Xilinx and is only recognized by
Xilinx's implementation. In addition to the optimized
netlist, many synthesis tools like Synplify will produce
a netlist for gate-level simulation and other report files.
Stimulus applied to this netlist instead of the original
HDL design produces the functional- level simulation,
which lets the designer verify that the synthesis process
hasn't changed the design's functions.

2.4 Design implementation (Place and Route+ Bit
Stream Generation)

The final stage in the FPGA development process
is the design implementation, also known as place and
route (PAR). Each FPGA vendor has its own
implementation tool, such as Xilinx's has Project
Navigator and Altera's has Quartus II's. If the FPGA
vendor has a complete development tool, meaning it can
perform synthesis, and the design is synthesized using
this tool, little or no setup is required for PAR. However,
if a third-party synthesis tool is used, the implementation
tool must be set up, which involves directing the PAR
tool to the synthesized netlist and possibly a constraint
file. The constraint file contains information such as
maximum or minimum timing delays for selected

signal(s) and I/0 pin assignments. Pin assignments can
be automatic (performed by the tool) or manual (dictated
by the designer). Automatic pin assignment is generally
the best option for ncw designs, as it lets the tool more
effectively route the design without having fixed pin
assignments. It may be nccessary to manually assign
signals to specific pins to achicve casy board routing,
to provide the minimum signal route for timing-critical
signals, or be compatible with legacy designs. There
are numerous reasons why manual pin assignments
would be necessary.

But regardless of the reason, the designer must
make this informatioH available to the PAR tool, which
1s done by creating a user constraint file that's used by
the PAR tool. After completing setup, the PAR process
can begin. Xilinx's Foundation or Project Navigator
performs design implementation in three steps: translate,
fit, and generate programming file. Translate, involves
verifying that the synthesized net list is consistent with
the selected FPGA architecture and there are no
inconsistencies in the constraint file. Inconsistencies

would consist of assigning two different signals to the
same pin, assigning a pin to a power or ground pin, or
trying to assign a non-existing design signal to a pin. In
such cases the translate step will fail and the
implementation process will be stopped. Translate errors
must be corrected before advancing to next step of fit
stage. This step involves taking the constraints file and
netlist and distributing the design logic in the selected
FPGA. If the design is too large or requires more
resources or available logic than the selected device
offers, the fitter will fail and halt the implementation
process. To correct this type of error, the current FPGA
is replaced with a larger one and is re synthesized, and
PAR is repeated for the design. A successful fit stage is
necessary to proceed to generate the programming file
stage. The final step is to generate the programming file, which can be stored in flash memory, PROMs, or
directly programming into the FPGA. This process is
also called Bit Stream Generation. Joint Test Action
Group (JTAG) and third-party programmers like Data
I/O are the two programming methods that are used to
store the programming file in memory. The ppropriate
format depends on the FPGA vendor, the programming method and the device used to hold the programming. In addition to the implementation process creating the
programming file, there are several output report files
created, such as a pad file which contains information
such as signal pin assignment, part number, and part speed.

This is how the FPGA designer completes his design process following the four development stages.

3 ISSUES AND CHALLENGES IN FPGA BASED
DIGITALDESIGN

Field Programmable Gate Array (FPGA) have
become an attractive implementation solution in the
modern digitai systens due to its reconfigurable
architecture, ease of design and flexibility, better
performance and low non recurring engineering cost
(NRE). However, following two are significant factors
and issues of concern in FPGA design:

" Power Consumption

Radiation Effecis on FPGAS

3.1. Power Consumption: Programmability of
FPGAs result in with more loaded interconnection

network as compared to customized circuits. As a resuit,
pass transistors, signal buffers and other programmable
switching structure increase the capacity load of signal
networks over dedicated metal wires. Therefore, there
is a significant increase in the power consumption on
account of flexibility of FPGA as compared to other
processing/ implementation units having fixed

architectures and interconnections.

There are two primarily types of power consump
tions in FPGAs: static and dynamic{2].[7),[13],[14].
Static power is consumed due to transistor leakage
whereas dynamic power is consumed by toggling nodes
and is mainly a function of voltage, frequency, and
effective capacitance. It is important to understand
both types of variations under various conditions so
that they can be properly optimized to meet the design's
power budget.

3.1.1 Static Power: Static power is mainly caused
by leakage current between power supply and ground
and consists of sub threshold leakage, reverse biased
PN junction current, gate induced drain leakage and gate
tunneling[8). The leakage current starts to be fairly
significant at 90 nm for both ASICs and FPGAs and
becomes even more challenging at 65 nm. Transistor
leakage and hence static power varies with the following

has parameters: Process, Voltage and Temperature.
been revealed that static power increases dramatically
along with shrinking transistor size. Moreover, the
thermal characteristics also get affected significantly
with design shrinking of features. The threshold voltage
of the transistor that also increases the leakage needs to
be iowered to obtain higher performance from the
transistor. Static power and leakage are also influenced
by core voitage and variation is approximately square
and cube of core voltage. Static power increases
approximately 15% with increase of only 5% of core
voltage. Leakage is strongly influenced by the junction

or die temperature{20]. On-chip temperature of

processing unit may vary among the whole area. The
maximum on-chip area is related to the chip area and
maximum powcr dissipation. The reduction of totai
maximum power therefore may increase the naximum
temperature that further influences the static power.

To reduce the transistor leakage FPGAs, Xilinx
IC designer started to adopt the use of a third-gate oxide
thickness (triple oxide) in the transistors of 90 nm
Virtex-4 FPGAs. The third medium thickness oxide
(midox) and higher threshold voltage in the portion of
the transistors of Virtex-4 FPGAs allows a dramatic

reduction in overal leakage compared to other FPGAs.
Virtex-5 FPGAs continue to deploy the triple oxide
technology in the 65 nm process node that enab!les
significant lower leakage current and static power.

3.1.2 Dynamic Power: Dynamic power is the
power-consumed .during switching events in the core
or I/Os of an FPGA. This is caused by signal transition
at device transistors and frequency of signal transition
is obviously related to clock frequency. In FPGA, the
dynamic power consumption is design dependent due
to its programmability. The factors like switching
activity of resources, effective capacitance of resource
and resource utilization are design dependent and
contribute to dynamic power. Switching activity
represents the average number of signal transition in a
clock cycle. The effective capacitancg corresponds to
the sumn of parasitic effect due to interconnection wires
and transistors. FPGA architecture usually offers more
resources than actually required to implement a
particular design, which means some resources, are not
used after the final chip configuration and they don't
consume dynamic power; this is referred to as resource
utilization. Taking all these factors into account, total
dynamic power consumption of the device is generally
modeled as:

Where:

P=v'fs,c,U,

n is the number of toggling nodes,

V is supply voltage,

f is clock/toggle frequency (presumed to be fixed for
each resource) and

S, C, and U correspond to switching activity of
resources, effective capacitance of resource and
resource utilization respectively[7], [81.[14).

All nodes in the FPGA consume power through a
combination of charging transistor parasitic capacitance

MR international Journal of Engineering and Technology, Vol. 2, No. 1, June 2010

and metal interconnect capacitance. Thelater depends
on the length of route in FPGA, while the number of
transistors that are switching determines the node
capacitance. Reducng the number of switching
transistors and minimizing routing lengths through
tighter packing can reduce the dynamic power. The
Virtex-5 FPGAs have lowered the gate capacitance and
shorter intcrconncct traces that contribues to lowering
the node capacitance by about 5% and hence lowers
the dynamic powe. Moreover dynamic power gets
reduced by approximately 7% in Virtex-5 FPGAs simply
by decreasing core voltage from 1.2 V to l.0 V. Table
1.l shows the relative dynamic power savings in Virtex 4 and Virtex-5 FPGAs as a result of reduction of

capacitance and core voltagc. Process and temperature also cause little variation of 5-10% in dynamic
power[20].

Table 1.l: Relative Dynamic Power Saving in Virtex-4 and
Virtex-5 FPGAs

Parameter

Core Voltage

Total Capacitance

Dynamic Power

Virtex-4
FPGA
90 nm

I.2

I.0

.44

Virtex-5
FPGA

65 nm

1.0

0.85

0.85

% of change

-16.6%

-15%

-40%

In the recent past, research efforts in reducing
the power consumption and improving the power
efficiency of reconfigurable FPGAS have intensified.
Three major possible strategies for reduction of power
consumption in FPGA are:

By simplifying the algorithm used at system level
By changing logic partitioning, mapping placement
and routing at designer level, if architecture is fixed
and

By enhancing the operating conditions of devices
including power supply, clock frequency and
capacitance.

Some of the techniques were proposed for
reducing leakage power by disabling unused portion of
the FPGA and by selecting polarities for logic signals at
the input of LUTs so that they spend the majority of
their time in the low leakage states. The proposal of
application of voltage scaling onto the logic blocks of
FPGA architectures was followed by the technology
mapping technique to utiliZe this feature more efficiently
Studies were also extended to crcate pr0gramnable dual

Vdd architecture to operate certain blocks at either high Vdd or low Vdd[J. Gayasen proposed to apply dual supply voltage on logic blocks and routing multiplexcrs[12]. Scaling down the supply voltage is a popular design techniquc and has been successful in ASICs for with dual Vdd or multi Vdd designs for power reduction| |1,(51,[10). Mondal proposed dual Vdd dual
Vt routing architecture, where a fraction of routing

tracks operate on high Vdd high Vt level while rest of
the routing tracks operate on scaled down Vdd and
V[15]. Dual voltage supplies werc provided to driving
buffers of the routing segments as well as switch
matrix. This architecture can also be used along
with the earlier above-mentioned power reduction
techniques.
3.2 Radiation Effects

Increased density and corresponding shrinkage of
process geonetry has made FPGA devices more
susceptible to failures due to external radiations. Earlier
this has been an issue for space based system but is
now becoming an issue for terrestrial systems in elevated
radiation environment and commercial avionics as well.
Radiation effects on single FPGA have system leve!
consequences and will need to be addressed in current
and future designs. There are two main categories of
radiation effects that are relevant for Static Random
Access Memory (SRAM) Field-Programnable Gate
Arrays (FPGAs) in space: Total- Dose Effects and
Single-Event Effects (SEEs).

Total-Dose Effects are cumulative effects that induce degradation of clectrical parameters at the device, circuit, and system levels. They are induced by the total amount of ionizing energy deposited by photons or particles such as electrons, protons, or heavy ions. This effect is similar to sunburn to human and is dependant on the amount radiations and how long it took to accumulate the total dose.

SEEs are induced by the passage of a single high energy proton or heavy ion through a device or a sensitive region of a microcircuit. SEEs can be eiter destructive (e.g., Single-Event Latch-up (SEL]), or non-destructive, such as the 0ccurrence of transient faults in
combinational and sequential logic.

The main reliability issues in radiations environment are: Single Event Latch up (SEL), Single-Event Upset (SEU) and Multiple-Bit Upset (MBU)
Single event latch up (SEL) occurs when one of the parasitic bipolar ransistor created as a by product of CMOS fabrication process is activated by a charged

Partivle Thix Ne of uset acivated by a chargcd
ItNIN WIN NeUUN and esults n a short being created
tn lr io guund On the chip. However, special
ta al eN UNng eptaval substrate clinminate
the aNItN blat tansINtOrN and susceptibilty to SEI
\Mn, raNed tensu t newer device famiies
ati the wIryndng lowerwone voltage is making SEI

Single evenis upsets (SEUs) ocUr when RAM
wll's state geN hangd due w exposure to energetic
nartes ihe ette will v detemined by the function
Mt artvular RAM andtcan aller one o moe of the

lvgntent

stale

logrontiualion

Altered logw onent is the mOst straight foward
etlvt atd results a ip lop rnsitioning to incoreet

Altered user logIwTesults in a gitch or momentary
bad data it it is n0t a art of feedbach clement and gocs

unnoticed. But tihis emwil he persistent and very likely
iw cause undc srable operations if it is a part of feedback
clement. FGAs suppon global funcions for
ngramming. intializanon and debug. These funetions
t improperl aciraledi wih alered logic content due

SEU and cuse the device 0 resct or enter
contiguration mode and interrupts all user functionality

mmediatelv. These cvents require complete
reOniguration tor recovery and are known as single
event functiona interrupts (SEFIs).

Altered logic configuration bits are always
persistent where the logic tunction gets changed. These
cmors are detectable via contiguration memory readback
and are easily repairable via partial recontiguration.
However. the user logic will likely malfunction randomly
during the time the logie is altered.

Altered routing is least likely to cause a logic failure
but is statistically most likely etfect of SEU. There is
hugh probability hat the upset will connect thc unused
wires and will be don't care as tar as logic is concerned.
But as paras1tic segments are added to the design due to
routing faults, there is a gradual rise in the devicc power
consumption. Moreover. it will have the effect of
degrad1ng the timing margin and finally may cause logic
failures if not repared by prtial reconfiguration. The
shorts and open caused due to altercd routing in the

Wires ut1lized tr design, of course, will have immcdiate
persistent cffect.

Multiple-Bit Upset (MBU)

Multiple Bit upset is an SEU that resuits in more
than one adjacent bits flipping due to an oblique angle
strike, lts probability steadily increases as geometries
shrink. Use of maximum MBU distance observed is
useful to deternine block RAM interleaving required so

that even MBUs are able to be corrected by the Eror
Corecting Code (ECC)

3.2.1 Mitigation Techniques

Using sOme redundancy techniques targeting the
licld Programmable Gale Array (FPGA) architecture can
protect the design at the high-level description VHDL
or Verilog level. The most popular high-level Single
Event Upset (SEU) mitigation technique currently used

(0 proteet designs synthesized in the SRAM-based
FPGAs is triple modular redundancy (TMR)
combined with scrubbing. Xilinx has relcased the tool
called X-TMR that automatically implements TMR into
the uscr description[18]. The user himself can also
implement TMR in his design that provides inmunity
from a single configuration or state upset[6). However,
duc to he high area overhcad of TMR, some alternative
solutions have been proposed in recent years. Therefore,
the user has the flexibility of inmplementing duplication
and self-checking techniques insicad of TMR. These
techniques may compromise the fault tolerance at soe
pont, but the final result may be acceptable for a set of
applications. In this way, it is possible to use a
commercial FPGA part to implement the design and the
soft error mitigation technique is applied to the design
deseription before being synthesized in the FPGA. The
user has the flexibility of choosing the fault-tolerant
technique and consequently the overhcads in terms of
area, performance, and power dissipation. One very
important step of the design flow is the validation of
the fault tolerance technique, which is usually done by
fault injection. A circuit or a tool in the computer can
modify the original bit streamn configured into the FPGA
by flipping the bit stream bits, one at a time. This tlip
emulates a SEU in the configuration mcmory cells. The
output of the design under test (DUT) can be constantly

monitored to analyze the effect of the injccted fault into
the design. If an error is detected, this means that the
fault-tolerant technique implemented is not robust for
that specific fault (SEU) in that target-configuration
memory bit. Table I.2 presents a summary of Single
Event Effect (SEE) issues and possible SEU mitigation

solutions{ l6].

MR International Journal of Engineering and Technology, Vol. 2, No. 1. June 2o10
9

faults would eventually break the redundancy. it is
recommended to scrub at least 10X faster than the
worst-case SEU rate. When the FPGA is in this mode,
an external oscillator generates the configuration clock
that drives the FPGA and Programmable Read-Only
Memory (PROM) that contains the "golden" bit stream.
Al cach clock cycie, new data are available on the PROM

data pins. The frequency that scrubbing must be
performed depends on the particle flux and cross-section
of the device. Xilinx Vertex devices support readback
and configuration mode that operates on only a portion

of the device and is known as partial readback and
configuration| 3]. It allows a more efficient means of
repairing configuration upsets. Unlike complete
configuration, it does not reset the device and allows
the uniterrrupted operation of the user.

TMR Tool

Implementing TMR is very difficult if it is done
manualiy. A special software tool (TMRTooi) has been
developed and fits within the Xilinx design flow. This
tool eliminates haif-latches (weak keepers), which are
also sensitive to SEU. This tooi has been evaiuated in

several radiation ests, but more efforts will be required
to ensure that it is completely effective.

TMR does not come without a price. Obviously,
designs are at least 3 times as large as a non-TMR
design, and suffer from speed degradation as well. In
paricular. feed back TMR degrades the speed of
operation by introducing a longer feedback path. Power
consumption is also tripled along with the logic. The
underlying assumption of TMR is that on!ly one upset
will occur within a given logic block. This is not always

a good assumption 10 make. In Virtex II deVices, recent
testing resulted in approximately .3-.5% of upsets
causing multipie bit upsets within the device. Also, the
scrubbing frequency defines the rate at which upsets
can be detected - this combined with the rate of upsets
provides the actual tolerance of the design[6]. This being
said, a proper TMR implementation combined with fast
scrubbing can provide better than an order of magnitude
increase in the radiation tolerance of a given design.

SRAM based FPGAS are widely used due to their
density, cost, and in system programmability. However,

another option exists in antifuse technology. In addition,

antifuse vendors also offer rad-tolerant versions of some
product lines, which are intrinsically resistant to SEUs

10 a degree not available in SRAM devices. Antifuse has
several advantages to SRAM. These one time
programmable devices use physical shorts between metal
routing tayers to configure their logic. Aside from being

faster and more power efficient than comparable SRAM
based switches, they are immune to radiation cffects.
As can be seen from table l, this eliminates 97% of

sensitive bits (in a device of similar density). Application
of TMR in an antifuse part is usually less costly in
resources, as only the state dependent logic needs to be
triplicated. The more efficient logic switching resuits
in lower power consumption and quieter operation that
are important considerations in mixed mode designs.
The main drawback of anti fuse is its one time
programmability; it is best suited for applications where
the initial requirements are stable and not expected to
evolve over time. In addition, antifuse parts are not
available in as high logic densities as SRAM devices.

Some antifuse vendors provide rad-hard versions
of some of their product lines. These devices are even
more radiation tolerant than standard antifuse, with

internal flip-flops TMRed in silicon (a device by
Quicklogic/Aeroflex even has hardware TMRed RAM
arrays). These devices completely remove the need to
TMR user designs, and are suitable for the highest
reliability requirements. However, the selection of devices
is constrained, and is not available in the highest densities
supported by antifuse.

4 CONCLUSION

Modern FPGAs are aiready at the heart of most
iow to mid volume electronic systems, and their
capabilities will continue to improve in the future. The
process technology trends in FPGA manufacturing
indicate that the leakage power will be an increasing
important design concern for future reconfigurabie
devices. Moreover, with the continuous shrinking of
device geometry, the susceptibility t0 radiation upset

will continue to grow. Upset tolerant design techniques,
both from a system and device level, are already
becoming a requirement for many systems. SRAM
FPGAs, such as the XilinxX vertex series, have long been
favoured due to their unmatched performance, density,
and in system programmability. yielding a powerful and
flexible solution chosen by many designers. However,
their relatively high susceptibility to radiation upset is a
factor to be considered in a growing number of
envirOnments.

REFERENCES

|21

K. Usami and M. Horowitz, "Clustered voltage scaling
techniques for low-power design, ISPLE), 1995

GJ.M. Smit and PJ.M. ! lavinga, A survey of energy
saving techniques for mobile computers, internal report

University of Twente, 1997

MR International Journal of Engineering and Technology, voi. 2, No. 1, June 2010
11

12

(3

(4}

(9]

(5]

[6]

[8]

Virtex architecture guide, Xilinx San Jose CA 9/00.

Carmichael C., Caffrey M., and Salazar A., XAPP2 1 6, *Correcting Single Event Upsets through Virtex Partial Configuration," June 2000.
M. Hamada, Y. Ootaguro, and T. Kuroda, "Utilizing surplus timing for power reduction," Proc. CICC, 2001.
Triple modular redundancy design technique for Virtex FPGAs (xAPPP197, v 1.0), C, Carmichacl, Xilinx, I 1/0 1.
L. Shang, A. S. Kaviani, and K. Bathala, "Dynamic Power Consumption in Virtex-II FPGA Family", Proceedings of the 2002 ACM/SIGDA 10h International Symposium on Field Programmable Gate Arrays, pages 157 - 164. ACM Press, 2002.

H.G. Lee, S. Nam, and N. Chang, "Cycle-accurate energy measurement and high-level energy characterization of FPGAS", Quality Electronic Design, 2003. Proceedings. Fourth International Symposium on 24-26 March 2003, Page(s): 267- 272.
0.S. Unsal and I. Korcn, "System-level power-aware design techniques in real-time systems", Proceedings of the IEEE, Volume 91, Issue 7, July 2003 Page(s): 1055 � 1069.

(10] R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A. Srivastava, and S. Kulkarni, �Pushing ASIC Performance in Power Envelope," presented at Design Automation Conference, 2003.
[11] F. Li, Y. Lin, and L. He, "FPGA Power Reduction Using Configurable Dual-Vdd," presented at Design Automation Conference, Sun Diego, CA, 2004.
[12] A.Gayasen, K.Lee, N.Vijaykrishnan, M.Kandemir, M.J. 0rwin, T.Tuan, "A Dual-Vdd Low Power FPGA Architecture", International confere nce on Field

Programmable Logic and Its Application, 2004, Antwerp. Belgium.
[13] Steven J. E. Wilton, Su-Shin Ang, and Wayne Luk, "The Impact of Pipelining on Energy per Operation in Ficld Programmable Gate Arays", Field Programmable Logic and Application: 14th International Conference, FPL 2004, Leuven, Belgium, August 30 September 1, 2004 Proceedings. Volume 3203 /2004, Chapter: pp. 719 - 728.

[14] V. Degalahal and T. Tuan, "Methodology for high level estimation of FPGA power consumption", Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific, Volume I, 18-2I Jan. 2005 Page(s):657 - 660 Vol. i.

[15] Mondal, Memik, A low power FPGA Routing Architecturc. ECE Department Northwestern University, Evanston lL USA, 2006.

[16] Label K., M. Berg, D. Black, W. Robinson, and A. Jordan, "Trade Space Involved with Single Event Upset (SEU) and Transient (SET) Handling of Ficld Programmable Gate Array (FPGA) Bascd Systems," 2006 Workshop on Hardencd Electronics and Radiation Technology (Heart), 2006.

[17] Carmichael C. XAPP197, "Triple Modular Redundancy Design Techniques for Virtex FPGAs," June 2006.
[18] TMR Tool user guide, Version 6.2.3, Xilinx Inc., Sept. 2006.

ft9} PawetP. Ezapski and Andrzej Sluztk, Power Optimization Techniques in FPGA Devices: A combination of system and low level, World Academy of Science, Engineering and Technology May 10, 2007.
[20] Peggy Abusaidi, Matt Klien and Brain Philo fsky Virtex-5 FPGA, system power design considerations WP2859(v1.0) Feb 14,2008.

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

