Signal Processing for Heart Rate
Variability: Part-Il

Abstract: The study of heart rate variability (HRV) provides a mean for
observing the heart'’s ability to respond to normal regulatory signals that
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1. INTRODUCTION

In our first paper (Part-I), we presented a detailed
survey and general backgrounds of research and
developmént of time-domain and frequency-domain
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dynamic nonlinear analyses rather than by linear time
series analyses. There are strong evidences to consider
the complex behavior of HRV as a nonlinear dynamic
and chaotic process controlled by the ANS[2-4]. It has
been shown that analysis of HRV by nonlinear dynamics

“analysis ttechniques of HRV--whichcoutd-be-apptied-te—an significantly imprdve the identification of an increase

variability signals in order to estimate their basic
properties. Recent advances, such as time-scale and
time-frequency transforms have been able to provide
sufficiently robust solutions in several biomedical signal
processing applications like noise reduction, restoration,
- detection, spatiotemporal dynamics esimation, source
localizatiton, and pattern recognition. However, the
classicat assumptions (stationarity, linearity, etc.) usually
do not apply in real situations. Further, part of the
answers to the challenges raised in Part-I comes from
the advancements in signal processing tools and
changing our way of thinking organizing and working
on biomedical data. These technological advancements
and changes are depicted in F ig. 1. This figure presents
a detailed summary of various linear and nonlinear

measures of HRV.

HRYV is a widely investigated signal and it is an
important maker of autonomic nervous sysem (ANS)
dysfunction{1]. Heart rate (HR) is controlled by several
central nervous system oscillators and different control
loops. Interactions among these units may induce
irregular time courses in the processes, but the
underlying sub-processes include well-determined
behavior. Therefore, it is presumed that these irregular
time courses can be characterized more adequately by
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in sudden cardiac death, in comparison with the
conventional linear analysis in the time or frequency
domain[5]. Significant nonlinear dynamics of heart-rate
fluctuations and respiratory movements were found. in
rabbits and piglets[6,7]. The rationale in the emergence
of nonlinear measures of HRV is that the heart isnota
periodic oscillator under normal physiological
conditions[8] and complicated feedback control of the
heart may give rise to nonlinear dynamics that are not
well reflected by conventional linear measures of HRV.
The complex characteristics of HRV signals in terms of
their (sometimes multiple) generating systems, as well
as the statistics of the superimposed noises which most
often are not known, make the solutions of the more
though problems in HRV extremely difficult which the
traditional approaches. The development of the time-
frequency domain and nonlinear dynamical sysem
analsyis has led to the introduction of a large amount of
signal analysis techniques aimed at the extraction of HRV
parameters from RR interval time series. The original
objective was the evaluation of the generating system
characteristics in order to better understand its nature.

Lee et al.[9] used a Wigner-Ville distribution[10]
as a time-frequency analsys tool to analyze
nonstationary HRV signals in patients with vasovagal
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time-varying frequency bands based o i
reauens Seong 150y
the HRV signal using an SPWVD algorithm. Mendez
fitrs:._gle’/] performs a Comparative analysis f’f different
réquency analysis methods for a condition during
ar‘ousal from sleep. Wiklund ef al.[18], Yang and
Liao[19] characterized the HRV signal using wavelet
transforrr.x as a time-frequency analysis method to
chara_lctenze HRV. Unser{20] and Akay[21] presents a
detailed summary on the applications of wavelet
transform in biomedical signal processing. Pichot et
al.[22] used wavelet transform to quantify HRV and to
access its instantaneous changes. Spaargaren and
English[23] used continuous wavelet transfom for
detecting ventricular late potentials. Wiklund and
colleagues[24] quantified the HRV signal in the time
domain by using wavelets. There are few other
researchers who have investigated wavelets for HRV
analysis and quantification[24-31]. Ramchurn and
Murray[32] used multifractal analysis of the day and
night characteristics of HRV. Newandee and
Reisman[3 1] analyze the HRV signal using three different

wavelets: Morelet, Daubechies-4, and Haar and
Martinez et al.{33] used an, undecimated wavelet
transform[34-36], for the analysis of HRV ‘signals and
- Yamamoto et al.[37] used the fractal properties of HR
to analyze long-term HRV. Saini ef al.[38] designed
statiétically matched wavelets[39-47] for deciphering
the true changes in HRV signals and used these wavelets
for quantifying the HRV in survived heart attack patients.
Togo and others[48] analyze the unique very low-
frequency HRV during deep sleep in humans using
wavelets analysis for classifying HR during lying and
sitting and Singh er al.[50] used a time-scale analysis
to study cardiovascular variability during various
autonomic function tests in humans. Further, Goren
et al.[51] used continuous wavelet transform in time-
frequency analysis of HRV. Cnockaert ef al.[52] used
continuous wavelet transform for the analysis of

respiratory sinus arrhythmia.

Recent advancements in the theory of nonlinear
dynamics have increased the interest for analyzing signals
generated from nonlinear physiological systems[53-64].
Pincus et al.[65] developed approximate entropy
(ApEn), a nonlinear complexity index, to quantify the
randomness of physiological time series. With other
means of characterizing physiological signals, ApEn has
been most extensively studied in the evaluation of HR

gril;;:lszi Achary'a et al.[66] found t}]at ApEn have
ue for middle and old aged subjects, indicating
smaller variability in the beat to beat. Schuckers
et al.‘[67] have used ApEn to classify sinus rhythm,
ventricular techycardia and ventricular fibrillation.
Makikallio et al.[68] concluded that ApEn analysis of
R-R interval time series provide useful information on
abnormalities in HR behavior that are not easily detected
by linear parameters. Signorini ef al.{69] concluded that
ApEn can also be used to classify the normal and
Myocardial infracted patients. In[70], Marati et al.
studied the effect of postural related changes on ApEn.
Signorini et al.[71] characterize the heart rate variability
(HRV) of patients affected by congesive heart failure
and concluded that these patients reflect a higher value
ApEn than healthy subjects. Richman et al.[72] have
developed and characterized sample entropy (SampEn),
a new family of statistics, measuring complexity and
regularity of clinical and experimental time-series data
and compared it with ApEn. Chen ef al.[73] compared
ApEn and SampEn for neural respiratory signals. Lake
et al.[74] optimized the SampEn parameters and found
that SampEn falls early in the course of neonatal sepsis.
and sepsis like illnes. Costa ef al.[75-77] suggested a
technique, multiscale entropy (MSE), to measure
complexity at multiple scales and applied MSE to cardiac
interbeat interval time series of healthy and diseased
subjects and observed that the dynamics of healthy
subjects are more complex than diseased subjects. The
multiscale approach gave more details about the time
scales at which irregularities occur and it allows
extracting the information about the signal strucure[77].
Gonzalez[78] proposed acceleration change index (ACI)
to characterize HRV. ACI is the modification to.echnique
suggested by Ashkenazy er al.[79] that uses the
differences of the RR-interval time series as the
intermediate time series for the scaling analysis of time
series. Liang et al.[80] studied the changes of fractal
dimension of the cardiovascular system during head
down tilt (HDT) and observed that fractal dimension
increased during HDT. Fractal dimension of elderly
subjects was smaller than that of young subjects[81].
The long-term variability of HRV (SDI) derived from
Poincare plots was considered as the marker of
parasympathetic activity as SDI was also found to be
decreased with upright posture and further decreased
during exercise in healthy subjects[82]. The short-term
variability (SD2) decreased during atropine
administration, and further decreased during exercise
after complete parasympathetic bockade[83], which

_ indicated that the SD2 was influenced by both

parasympathetic as well as sympathetic activity. Largest
Lyapunov exponent (LLE) quantifies sensitivity of the

81|
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or clder) and found that the steeper pPower law was the
best predictor of a] cause mortality[86].

This paper will focys on advanced and innovative
n_lethods of HRV signal processing. The study envisaged

2. TIME-FREQUENCY DOMAIN

The HRV metric which were discussed earlier are
based on frequency domain methods, The main difficulty
in frequency-domain processing of RR-intervals series
i$' non-stationary behaviour of heart beats, The heart
beats of even a normal healthy person tend to be time
variant. This non-stationarity becomes more severe in
abnormal cardiac rhythms. Thus the conventional PSD
estimation techniques are not suitable for analyzing heart
beat signal whose frequency components change rapidly
with time. The problem concerning the estimation of
such time varying signal has become now a days a
source of an active research,

2.1 Smooth Pseudo Wigner-Ville Distribution

The accuracy in the measurements of the spectral
parameters of HR signal depends on a number of
processing variables, such as the resolution and bias of
the algorithm used, the length of the observation window,
and the interaction between different harmonic
components. In this regard the Wigner-Ville distribution
(WVD) is a powerful time-frequency distribution that
gives excellent time-and frequency-resolution and other
properties, so that it s extensively used in many areas
of signal processing, such as speech, seismic, and
biomedical signals[87]. This method provides localized
time and frequency descriptions of HRV to characterize
the changing autonomic regulation.

The WVD of a real signal [88], x(n), is defined
using equation (1)
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WVDy (n,0) = roz ( n+ : ) VAS (n - i) exp (=jwr)dr ... (1)

—© 2 2
where, z(n) is the analytic signal associated with x(n)
The equation (1) is very rarely used in its pure form,
and the Smooth pseudo Wigner-Ville distribution
SPWVD is employed instead[9]. The discrete form of
the SPWVD is given using equation (2)[88] [89].

M+N M
SPWVD (n,m) =2 2 | h (k)| 2 > Jn (m) exp (<j20m) ... (2)
n=M+1 m=1

where, h(k) is the frequency smoothing Hann window;
m is the frequency index; N is the total number of data
points; M is the total number of frequency points; Jn(m)
is a discrete kernel function given by equation 3)[176]

fn (m)=z (n+m) z*(n-m) w(m) w*(m) v (3)
where, w(m) is the time smoothing Gaussian window
2.2 Continuous Wavelet Transform

The continuous wavelet transform[90] is defined
as follows using equation (4) :

1 t-b .
CWT, ¥ (b,a) =y V (b, a)zﬁ fx (t?._w* (:—) e - ... (4)

where y(t) is the transforming function called as mother
wavelet, b and a are the translation and scale parameters.
The term mother wavelet gets its name due to two

important properties of wavelet analysis as explained
below:

2.3 decimated (Discrete) Wavelet Transform in
HRV

The decomposition of the signal with the decimated
(discrete) wavelet transform (DWT) is based on a
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approximation (low-pass component) signals and down
sampled. The detail signal is then stored and the
decomposition continues by filtering the approximate
signal as the input signal for the next scale. At each
scale, j, the frequency axis is recursively divided into
halves at the ideal cutoff frequencies given by equation

(6)[95].

P |
f:i =927
2T

.. (6)

The DWT based decomposition algorithm is
shown in Fig. 2 where the cardiovascular signals were
decomposed into eight wavelet scales (J=7) with
sampling interval T=1/2.4 sec [171]. This resulted in
the following set of bank limits for the filter bank:
0.01875, 0.0375, 0.075, 0.15, 0.30, 0.60, and 1.2 Hz.
The decomposed LF and HF signals were obtained by
merging the detail signals at scales 5 and 6 (0.0375-
0.15 Hz) and at scales 3 and 4 (0.15-0.60 Hz),
respectively. The VLF component corresponded to the
detail signal at scale 7. However, the critical down
sampling which has been performed in this algorithm
makes this transform shift variant. This justifies the
use of an undecimated wavelet transform (UWT) for
HRV studies. In UWT firstly the filter is stretched to
take into account the rescaling and then the convolution
is performed without any sub-sampling[34]. This
procedure makes the transform bulky and is said to be
redundant or over complete, in the sense that
superfluous coefficients are retained in the transform
and successive coefficient metrics are of the same size
as the input data, that makes the transform shift-
invariant[33], [35]. In addition to shift-invariance the
UWT gives increased amount of information about the
transformed signal as compared to the DWT.

X —dy(06-12H)

2, (0.0-0.6 H2)

Fig. 2. Two filter bank implementation of Mallat algorithm for
frequency bands of HRV signals..G(Z) and H(Z) are high
and low pass filters. d’s and a’s are detail and
approximation coefficients.

The DWT and UWT algorithms are both special
cases of the same filter bank structure. Therefore, in
principle it is possible to combine both algorithms in

the same decomposition structure to gain the benefits
of both these approaches{36]. That is, the computational
efficiency and sparse representation are the inherent
advantages of DWT, while shift-invariance and aliased
free spectrum are the advantages of a fully sampled
UWT. Thus based upon these merits, the DWT and UWT
algorithms are blended together to propose a new
algorithm called over-complete decimated (discrete)
wavelet transform (OCDWT) for the accurate
assessment of HRV signals. The OCDWT algorithm is
critically sub-sampled to a given level of decomposition,
below which it is then fully sampled. Saini ef al.
proposed this OCDWT for deciphering the true changes
in HRV of healthy subjects in lying and standing postures
in comparison to DWT algorithm.

3. NON-LINEAR TECHNIQUES

Much of what is known about physiological
systems has been learned using linear system theory.
However, many biomedical signals are apparently.
random or aperiodic in time[96]. The most direct link
between chaos theory and the real world is the analysis
of time series from real systems in terms of nonlinear

dynamics.
3.1 Complexity Analysis

Heart is a complex biological system and every
complex system has emergent properties which define
its very nature. Complexity has proved to be an elusive
concept. Different researchers in different fields are
bringing new philosophical and theoretical tools to deal
with complex phenomena in complex systems. Recent
studies demonstrated that HRV present a complex
behavior that may contain hidden information, which
may not be extractable with conventional methods of
analysis[96]. Such information promises to be of clinical
values as well as to relate to basic mechanism of healthy
and pathologic functions[97].

3.1.1 Approximate entropy

Approximate entropy (ApEn) is a statistic that can
be used as a measure to quantify the complexity of a
signal. It was first proposed by Pincus in 1991{65]. It
has been widely adopted by many researchers especially
in the field of HRV[66],[98]. Nonlinear dynamics
analysis may be a powerful tool to reveal the
characteristics and mechanism of biosignals. But a very

long data sequence is needed to estimate accurately many

of nonlinear parameters[99]. The popularity of
approximate entropy stems from its capability to provide
quantitative information about the complexity of the
experimental data that are short in data length[98]. ApEn
measures that (logarithmic) likelihood that runs of
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Patterns that are close for observations remain close
on next incremental comparison. Greater likelihood of
remaining close, i.¢., high regularity, produces smaller
ApEn values. ApEn is closely related to the Kolmogrov
entropy, which is a measure of rate of generation of
new information[72]. To compute APpEn, the time series
is evaluated for patterns to recur. This is performed by
evaluating the data Seéquences of length m and
determining that other Seéquences fall within tolerance .
Thus two parameters and » must be fixed to calculate

(SampEn) is a modification of ApEn. The differences
with respect to ApEn are: (i) self-matches are not
counted (ii) only the first N = m vectors of length m are

. considered[71,72]. SampEn has the advantage of béing

less dependent an the time series length and shows
consistency over broad ranges of possible m, » and N
When these parameters are adjusted appropriately, the
SampEn method appears to yield more consistent results
than does the ApEn method and it appears to be affected
to a lesser degree by the ‘choice of m and the data
length[73]. Furthermore the values of SampEn agree
with the theoretical values expected for a uniform
random noise time series much more than the ApEn
values, even for very short time series[74].

3.1.3 Symbolic entropy

Symbolic time series analysis involves the
transformation of the original time series into a series
of discrete symbols that are processed to extract useful
information about the state of system. Symbolic time
series analysis closely related to symbolic dynamics,
introduced by Hadmard ef al.[96]. There ‘have been
various approaches for symbolization of time series.
The type and number of symbols depends upon length
of time series. Long time series allow higher number of
symbols than short time series. The most common
approach is to assign value ‘1’ and ‘0’ according to its
occurrence. Kurth et al.[5] used two different kinds of

N,
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procedures to transform the HRV into symbol sequenc.es.
The first transformation refers to four symbols using
mean RR interval. The second transformation considered
the first difference of RR intervals, which reflects
fluctuation properties inherent in HRV. Kurth ef al. [5]
analyzed the RR intervals and first difference o.f the
intervals, using both the Shanon and Renyi entropies as
measures of signal complexity. The generalized Renyi
entropy was found to be more useful than Shanon
entropy. Park et al.[98] observed that corrected symbolic
entropies consistently separate the normal and
physiological symbolic sequences.

3.1.4 Multiscale entropy

Cardiovascular control is carried out by several
regulatory mechanisms interacting across multiple
temporal scales. Short-term neural regulation, carried
out by the ANS via sympathetic and parasympathetic
branches, is relatively fast (with periods ranging from

‘3 to 15 seconds), while vasomotor control, chemoreflex

regulation and thermoregulation are slower and hormonal
control ever more sluggish. As a result of the
concomitant action of all these regulatory mechanisms,
heart period changes on a beat-to-beat basis and its
variations, usually referred to as HRYV, occur over a large
set of temporal scales. Due to this multiscale behavior,
HRYV cannot be completely characterized on a single time
scale[100] and as a result, cardiac interbeat (RR) time
series under healthy conditions have a complex temporal
structure with multiscale correlations[75-77]. Although
entropy-based algorithms for measuring the complexity
of physiologic time series have been widely used and
proved to be useful in discriminating between healthy
and disease states, but due to multiple scales mechanism
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in comparison to the 1/f noise. However, the application
of the MSE method shows that the value of the entropy
for the I/f noise remains almost invariant for all the
scales while the value of entropy for the white noise
time series monotonically decreases and for scales
greater than 5, it becomes smaller than the
corresponding values for the 1/f noise.

3.2 Sign Series Analysis

Sign series analysis involves the transformation
of the original RR interval time series into a series of
differences of RR intervals[96].

3.2.1 Acceleration change index

Acceleration change index (ACI) as presented by
Garcia Gonzalez to characterize HRV[78], is a
modification of technique suggested by Ashkenazy
et al.[79] that uses the differences of the RR interval
time series as the intermediate time series for the scaling
analysis of time series. Ashkenazy et. al.[79]
decomposed the original time series into two

groups (a) magnitude series”i ~ |4RRi| (b) sign series -

Si = sign(ARRi) The detrended fluctuation analysis
(DFA) was applied on sign series to obtain the scaling
exponent. Sign series is robust in handling complex
signals that include spikes. ACI increases only when a
local minimum: is followed by local maximum or vice-
versa. It detects the presence of very high frequency
contents in the HRV time series. This index is robust in
the presence of artifacts because of its insensitivity to
fast changes due to sign operation.

3.3 Graphical Represenfation

3.3.1 Poincaré plot

Poincaré plot is a visual tool in which each RR
interval is plotted as a function of previous RR interval.
Poincaré plot provides summary information as well as
detailed beat-to-beat information on the behavior of heart.
Beat-to-beat variation can be easily displayed for visual
assessment by graphing of each RR interval against the
subsequent RR interval. The problem regarding Poincaré
plot use has been lack of obvious quantitative measures
that characterize the salient features of Poincaré plots.
To quantitatively characterize the plot, a number of
techniquesike converting the two-dimensional plot into
yarious one-dimensional views; the fitting of an ellipse
to the plot shape; and measuring the correlation
coefficient of the plot have been suggested[101,102].
The width of the Poincaré plot corresponds to the level
of short-term HRV, while the length of the plot
corresponds to the level of long-term
variability[83],[101],[102].

MR International Journal of Engineering and Technology, Vol. 2, No. 1, June 2010

3.3.2 Recurrence plot

The dynamic properties of the time series are
relevant and valid only for stationary data. Recurrence
plots are used to reveal nonstationarity of the series.
Eckmann ef al.[103] has proposed this graphical tool
for the diagnosis of drift and hidden periodicities in the
time evolution, which are unnoticeable otherwise. The
recurrence plot of normal HR has diagonal line and less
squares indicating more variation indicating high variation
in the HR. Abnormalities like CHB and in Ischemic/
dilated cardiomyopathy cases, show more squares in
the plot indicating the inherent periodicity and the lower

HR variation[104].

3.4 Chaotic Analysis

The word ‘chaos’ means undesired randomness
or disorder. In mathematics, chaos theory (also known
as dynamical instability) began as.the study of the
evolution in time of systems that are extremely sensitive
to initial conditions[105-107]. Chaos theory has
evolved into the study of the behavior of physical
systems that at first seem entirely random but in fact

are not entirely so.

3.4.1 -Fractal dimension

A fsactal is a set of points that when looked at
smaller scales, resembles the whole set. The .concept
of fractal dimension (FD) that refers to a noninteger or
fractional dimension originates from fractal geometry.
The FD emerges to provide a measure of how much
space an object occupies between Euclidean dimensions.
The FD of a waveform represents a powerful tool for
transient detection. This feature has been used in the
analysis of ECG and EEG to identify and distinguish
specific states of physiologic function. Fractal dimension
can be quantified n meaningful way by a number of
techniques[107-109].

3.4.2 Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) is used
to quantify the fractal scaling properties of short interval
RR ‘interval signals. DFA is scaling analysis technique
proposed by Peng et al.[110] in 1995 to detect long-
range correlations in the time series having
nonstationaries. DFA was developed specifically to
distinguish between intrinsic fluctuations generated by
the complex systems and those caused by the external
or environmental stimuli[110]. The principal advantage
of DFA is that it is able to detect long-range correlation
in time series having non-stationarieities. However, data
requirements are greater than as compared with other
techniques and at least 8000 data points have been
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suggested to be 'included[l 10]. DFA was found to carry
additional information that Was not provided by the
traditional time and frequency HRv measures. In a
retrospective comparison of 24 hour HRY analysis using
es in MI patients with or without
inducible ventricular tachyarrhythmia[l 11], a decrease

in scaling exponent @) Wwas strong predictor fo risk
tachyarrhythmia.

3.4.3 Largest Lyapunov exponent

€Xponentially, relative to each other. For dynamical
Systems, sensitivity to initial conditions is quantified by
the Lyapunoy exponent. They characterize the average
rate of divergence of these neighboring trajectorjes. A

maintain their relative positions; they are on a stable
attractor. Finally, a positive exponent implies the orbits
are on a chaotic attractor[66],[99]. The algorithm
proposed by Wolf ét_‘ al.[99] is used to determine the
Largest Lyapunov Exponent (LLE). LLE quantify
sensitivity of the system to initial conditions and gives a
measure of predictability. Lyapunov exponent provides
significant information about the ANS and observed that
there is a well organized behavior of HRC[112]. LLE
decreases with aging indicating that the HRV becomes
less chaotic as healthy subject grows old[66].

3.4.4 Power law analysis

Power law analysis can measure the long range
correlation, enabling the clinicians and scientists to
classify physiological and pathological signals[84]. This
analysis was performed by calculating the power
spectrum and then plotting the log of spectre‘xl power
against the log of frequency. A straight line with sloPe
of approximately ‘-1’ is obtained. Frequency.domam
analysis and power law analysis assess different
characteristics of the underlying signal. Frequency
domain analysis measures the contributions of specific
frequencies to the underlying signal, whereas, the power
analysis determines the correlations across the frequency
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spectrum. Power law analysis has be:en ap_phed in
numerous clinical studies and a change in the mterce!)t
and é]ope has been present and is of prognostic
information in disease.

4. FUTURE CHALLENGES

A major challenge in this area of biomedical signal
processing is to demonstrate the utility and clinicz-il
implications of specific measures of HRV in diagnosis
and monitoring so that such measures become part of
routine patient care. The current clinical applications of
HRV are limited in use and the task of finding simple
but effective parameters is yet to be accomplished.
Furthermore, no consensus or clear definitions for the
analysis methods have been found and guidelines of the
Task Froce of ESC & NASPE[1] is just a step in this
direction. Perhaps it is even time to consider another
task force initiative on HRV with appropriate updating,
critical review and suggestions for new directions, taking

into account the important results obtained in the last
10 years.

An important innovative aspect in this direction is
considering the integration between HRV signal
processing and physiological modeling of the
cardiovascular system. In this way, it is possible to
directly attribute patho-physiotogi ing to the
parameters obtained from the processing, or vice versa,
the physiological modeling fitting could certainly be
improved by taking into account the results from the
signal processing procedure. Generally, scientists who
do signal processing do not do modeling: biomedical
engineering must integrate these two aspects in order
to properly train young scientists in the area and to
provide a cultural vision for the implementation of
important tools for newer investigations. Further, a
modern and very Promosing approach of HRV signal
processing, which is capable also to combine the outputs
from physiological modeling, is the so-called MMM-
paradigm (i.e., multivariate, multiorgan, and multiscale).
Such an approach makes the system genesis explicit,
where complexity is potentially allocated and how it is
possible to detect information from it. No doubt that
processing signals from multileads of the same system
(multivariate), from the interaction of different
physiological systems (multiorgan) and integrating all
this information across multiple scales (from genes, to
proteins, molecules, cells, up to the whole organ) could
really provide a more complete look at the overall
phenomenon of physiological System complexity, in

respect to the one which is obtainable from its single
constituent parts.




5. CONCLUSIONS

This study anticipates an increase in interest to
understanding cardiovascular functions by using HRV
as a noninvasive tool and its coupling with advanced
signal processing methods. The variety of HRV
estimation methods and contradictory reports in this
field indicate that there is a need for a more rigorous
investigations of these methods as aids to clinical
evaluation. Furthermore, much effort remains to be done
for elucidating the mechanism underlying complex HR
dynamics and cardiovascular control. A diverse
application of signal processing and modeling efforts in
this context has yielded substantial enhancement in
understanding. A stronger integration between
physiological modeling and HRV signal processing
should help to construct fundamental links between
more speculative research and real world clinical impact.
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