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Abstract: Describing function method is used for stability investigation and
prediction of limit cycle in nonlinear systems. If there are uncertainties in the
system then the frequency and amplitude of the limit cycle will change
accordingly and describing function method can deal with these uncertainties.
In this paper attempt has been made to study the stability and robustness of
nonlinear systems in the presence of uncertainties in different forms.
Barkhausen characteristic equation is used in this paper to determine the
robustness of the limit cycle. A robust controller to control the amplitude and
the frequency of limit cycle against the parametric perturbations is also
explained in this paper.
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I. INTRODUCTION

There are several well-developed techniques for
analyzing nonlinear feedback systems like Phase plane
method, Lyapunov stability, Singular perturbation,
Popov, Small-gain theorem etc. To analyze the nonlinear
system stability it is important to analyze the limit cycle
behavior which can be done with the help of Describing
Function (DF) method [1-7]. This method is applicable
to systems with separable nonlinearities [8, 9, 10]. The
Nyquist plot of the linear subsystem and the negative
inverse of the describing function of the linearzed
element are drawn in the complex plane. The intersection
of these plots is used in an approximate, but useful limit
cycle analysis. Using the describing function method it
is also possible to analyze the limit cycle behavior of a
nonlinear system in the presence of uncertainty [11].
This paper explores the problem of stability analysis of
nonlinear systems (nonlinearity in feedback and feed-
forward position) in the presence of uncertainty. Lur’e
control system problem has a forward path that is linear
timeinvariant, and a feedback path that contains a
memory-less, possibly time-varying, static nonlinearity
[5]. The nonlinear Lur’e problem can be linearized by
describing function method (DF). A formula based on
Loeb criterion determine whether the limit cycle is locally
stable or not[12]. In this paper unstructured uncertainty
has been modeled in additive and multiplicative form in
the system to analyze the nonlinear systems stability. In
addition of stability analysis of nonlinear systems a robust
controller is also designed in this paper which can control
the amplitude and frequency of limit cycle in the
presence of uncertainties [14, 15].

The rest of paper is organized as follows- Brief
introduction of describing function method used for
nonlinear system analysis is given in section II. A method
of limit cycle stability analysis is discussed in section
III. Section IV presents additive and multiplicative
uncertainty modeling. Analysis of Robust stability of
limit cycle is dealt in section V. An example has been
given in section VI for the explanation of sections
explained above. A controller to control the amplitude
and the frequency of limit cycle is also explained in
section VII with an example. Finally section VIII
concludes the paper.

II. DESCRIBING FUNCTION METHOD OF THE
NONLINEAR SYSTEM ANALYSIS

The describing function method is used to
determine the limit cycle and dynamical behavior of the
nonlinear systems [4-7]. Consider a feedback system
shown in Fig.1 where G(s) represents a linear element,
while N represents a nonlinear element existing in the
feedback path.

Fig. 1. Lur’e System
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If the nonlinearity assumed to be an odd function
and the transfer function G (s) has the low pass
characteristics then the nonlinearity can be replaced by
the describing function N (X) which is the complex
ratio of the fundamental component of the output y (t)
and the sinusoidal input x (t), that is:

Y1 ejϕ1
N (X, w) = ––––––

x

Where A1 and B1 are Fourier coefficients. Now
the overall system can be treated as a linear system and
the characteristic equation can be written as:

1 + N (X,w) G (jw) = 0 ... (2)

III. STABILITY ANALYSIS OF LIMIT CYCLE

If the limit cycle is stable, the states of the system
will return to it  after perturbations. Any small
perturbation from the closed trajectory would cause the
system to return to the limit-cycle making the system
stick to the limit-cycle. So the limit cycle and nonlinear
system stability has a close relationship. Consider the
nonlinear Lur’e system as seen in Fig.1 and the nonlinear
element N is even symmetry and memory-less, the
DF(describing function) of the nonlinear element N is
denoted as N(X). Assume that there is an intersection
X0, w0 of Nyquist plot of Eq.(2),

Where Y1 = √ A
1
 + B

1
  and ϕ1 = arctg A1

B1

∂ N (X, w)

∂ X

∂
X0, w0 ≠ 0, ––– ImG (jw)   w0 ≠ 0

∂w
⏐ ⏐

And all the roots of 1 + N(X0)G(s) = 0 are Hurwitz
except for + jw0

if N’ (X)  Re [G’ (jwo)] < 0 ...(3)

then there exists a locally stable limit cycle.

On the other hand,

if N’ (X) Re [G’(jwo)] > 0 ... (4)

then there exist an unstable limit cycle[12].

IV. UNCERTAINTY MODELING

Model uncertainty can be divided into two general
categories: structured and unstructured uncertainty
[13]. Structured uncertainty assumes that the

uncertainty is modeled and we have ranges and bounds
for uncertain parameters in the system. Unstructured
uncertainty assumes less knowledge of the system. We
only assume that the frequency response of the system
lies between two bounds. Unstructured uncertainty can
be modeled in different ways: additive and multiplicative
uncertainty.

(1) Additive uncertainty: suppose we model a system
by G(s) and actual system is given by G (s)

G (s) = G (s) + Δa (s) ... (5)

Fig. 2. Additive perturbation configuration

Therefore, the model error, or the additive
uncertainty, is given by

Δa (s) = G(s) – G(s) ...(6)

(2) Multiplicative uncertainty: In the multiplicative
uncertainty case, we assume the true model, G(s)
is given by

G(s) = [1 + Δm (s)] G(s) ...(7)

∼

∼

∼

∼

∼

Fig. 3. Multiplicative perturbation configuration

The uncertainty, or the model error, is given by

G(s) – G(s)
Δm (s) = –––––––––– (8)

G(s)

∼

V. ROBUST STABILITY OF LIMIT CYCLE

With the help of Barkhauen characteristic equation
robustness of the limit cycle can be determine [12].
This Barkhauen characteristic equation is generated with

...(1)
2 2
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the help of conventional Barkhauen principle. By applying
Barkhauen principle in the feedback system shown in
Fig.1 we have

(the phase of G(jωo) is 180 degree),
Img G(jwd) = 0 ...(9)

and

N(X)max· ReG(jwo) >1 ...(10)

Where N(X)max is the maximum value of
describing function N(X).

Eq. (9) can be written as

Im G(jwo) = G(s) – G(–s)⏐ = 0 ...(11)

Eq. (11) can be written as

1m G(jwo) = = 0 ...(12)

Where A(s) and B(s) are the numerator and
denominator of the transfer function G(s) respectively.
From Eq. (12)

C(s) = A(s) B(–s) –A (–s) B(s) = 0 ...(13)

Eq. (13) is called Barkhausen characteristic
polynomial. The robustness of nonlinear system is
directly dependent on the value of ⏐C’(jwo)⏐.

VI. Example (1)

Consider a Lur’e problem as seen in Fig. 1, which
has the plant transfer function G(s) is such as

G(s) = ...(14)

A(s) B(–s) – A (–s) B(s)

A(s) B(–s) ⏐s=jwo

0.2412s3 + 0.60444s2 + 0.03846s + 0.0615

s5 + 5.06s4 + 0.4085s3 + 0.5436s + 0.0063s + 0.004

and the nonlinearity which is a combination of dead
zone, coulomb & Viscous friction and saturation
nonlinearity. The describing function of this nonlinearity
will be

N(X) = 2   sin–1 –sin–1 + 1– + 1–

...(15)

1
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Fig. 4. Sinusoidal response of nonlinearity

When the values of saturation S=1, dead zone
Δ=0.5 and Coulomb friction value 0.5 with coefficient
of viscous friction is δ=1.

The point of intersection of G(jw) and -1/N(X)
can be obtained by describing function method and which
is ωo = 0.278 rad/sec, Xo = 2.31 . With Eq.(3), it can
be founded that the limit cycle is locally stable. Fig.5
shows the simulation model.

Fig. 5. Simulation model

From Eq.(13), we have the Barkhausen Characteristic
Polynomial

C(s)= 0.4824*s^7 +0.1007*s^5 +0.0079*s^3 +
0.0002*s ...(16)

The roots of Eq. (16) are -0.0789 +0.2948j,
0.0798 + 0.2948j, +0.2183j, 0

⏐C’(0.278j)⏐ = 1.8306e - 004, it can be observed
that the limit cycle is not robust. Now let’s consider the
following five parameter’s perturbations.

Perturbation (1): –0.04s2 – 0.002s – 0.004
numerator of G(s).

Perturbation (2): 0.006s + 0.001 in the numerator
of G(S)

s=jwo

s=jwo
⏐
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Perturbation (3): 0.1s3 – 0.002s2 + 0.003s +
0.01 in the denominator of G(s)

Perturbation (4): 0.2s4 + 0.01s3 – 0.025s2 –
0.001s in the denominator of G(s).

Perturbation (5):

un-modeled dynamics of G(s)

Now determine the change in frequency and
amplitude of limit cycle when we are dealing with plant
transfer function given in Eq.(14), with given
parameter’s perturbations. The percentage change of
amplitude and frequency when the perturbations are in
additive form can be seen in Table  1. Fig. 6 shows the
simulation results.

0.2s + 0.1105
0.15s+0.1

Table 1

Perturbation Amplitude Frequency % change % change
in in
Amplitude Frequency

Nominal 2.31 0.278 – –
Plant

(1) 2.04 0.295 –11.68 +6.11

(2) 2.45 0.292 +6.06 +5.03

(3) Limit cycle disappear (unstable behavior)

(4) 2.17 0.274 -6.06 -1.44

(5) Limit cycle disappear (unstable behavior)

Fig. 6. Limit cycles for the system given in Eq.14 with
additive perturbation

It can be seen that with perturbation (3) and (5),
the limit cycle disappear when the perturbations are in
additive form and for perturbation (1) the percentage
of amplitude’s change is - 11.68% and the percentage
of frequency’s change is +6.11%. With perturbation (2),
the percentage of amplitude’s change is +6.06% and
the percentage of frequency’s change is +5.03%.

With perturbation (4), the percentage of
amplitude’s change is - 6.06% and the percentage of
frequency’s change is -1.44%.

The percentage change of amplitude and frequency
when the perturbations are in multiplicative form can
be seen in Table 2 and the Fig.7 shows the simulation
results.

Table 2

Perturbation Amplitude Frequency % change % change
in in
Amplitude Frequency

Nominal 2.31 0.278 – –
Plant

(1) 2.37 0.274 +2.59 -1.44

(2) 2.31 0.278 0 0

(3) Limit cycle disappear (unstable behavior)

(4) Limit cycle disappear (unstable behavior)

(5) 2.19 0.288 -5.19 +3.59

Fig. 7. Limit cycles for the system given in Eq.14 with
multiplicative perturbation
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It can be seen that with perturbation (3), (4) the
limit cycle disappear when the perturbations are in
multiplicative form and for perturbation (1), the
percentage of amplitude’s change is +2.59% and the
percentage of frequency’s change is -1.44%. With
perturbation (2), the percentage of amplitude’s change
is 0% and the percentage of frequency’s change is 0%.
As for perturbation (5), the percentage of amplitude’s
change is -5.19% and the percentage of frequency’s
change is +3.59%.

VII. ROBUST LIMIT CYCLE AMPLITUDE AND
FREQUENCY CONTROLLER

In the previous sections the methods to analyze
the stability and robustness of nonlinear Lur’e system
is given. Now in this section a design procedure of a
robust controller is given which can control the
characteristics of limit cycle in the presence of
uncertainties [14,15].

This design procedure is based on describing
function method. In this design procedure the linear
part of the feedback loop is designed such that the
intersection point of graphs of linear and negative inverse
of nonlinear part is shifted to get the desired limit cycle
characteristics.

Suppose the desired limit cycle characteristics are
(Xd, wd) and the intersection point corresponding to
the desired limit cycle characteristics is (a,0). (Imaginary
part is taken zero in this discussion)

According to describing function method:

Desired linear part of feedback loop

H(s) = – = 1 + j0 where a < 0

H(s) is the desired transfer function of feedback
loop and

H(s) = C(s) G(s) ...(17)

So after calculating the H(s) the controller can be
computed as

C(s) = H(s)G-1(s) ...(18)

If the transfer function H(jw) intersect –
perpendicularly at point (a,0) then the limit cycle will
we robust against the uncertainties.

1
N(X, wd)

1
N(Xd,wd)

Some changes have to be done in C(s) after
designing due to some implementation issues and desired
characteristics.

Design Procedure:

Suppose the form of H(s) is

H(s) = ...(19)

Where the nu, … no are numerator coefficients and du,
… do are denominator coefficients which have to be
designed according to the requirements.

Assume a simple form of H(s) for further
calculation

H(s) = ...(20)

The requirements according to which the
coefficients of H(s) should be chosen are:

(I) Intersection point:

H(jwd) = a = – ...(21)

From Eq. (20) and (21)

= a ...(22)

By solving Eq. (22)

n0 = ax ...(23)

n1 = ay ...(24)

where

x = d0 – d2 wd
2 ...(25)

y = d1 – wd
2 ...(26)

One of the requirements for describing function
method is the transfer function H(s) of linear part has
the low pass characteristics i.e. d0 = 0.

2. Stability Condition:

The characteristics eq. for the system given in
Fig. 8 will be

1 + H(s) N(X,w) = 0 ...(27)

nusu + nu-1su-1 + … + n1s + n0

sv + dv-1sv-1 + … + d1s + d0

n1 s + n0

s3 + d2s2 + d1s + d0

1

N(Xd, wd)

jwdn1 + n0

(jwd)3 + d2(jwd)2 + d1(jwd) + d0



12

(for nominal limit cycle)

Consider N (X,w) = K = – ...(28)

Now with the help of Eq. (20), (27), (28) the
characteristics Eq. can be written as

s3 + d2s2 + (d1 + Kn1) s + Kn0 = 0 ...(29)

Consider N (X,w) = K = – + Δ ...(30)

(for perturbed limit cycle and Δ is close to zero)

Now using Eq. (29) and (30) characteristics Eq.
for perturbed system will be

s3 + d2s2 +   d1 – + Δn1 s – + Dn0 = 0 ...(31)

Now applying Routh-Hurwitz criterion in Eq. (31)
these conditions for stability can be obtained:

d2 > 0 ...(32)

n2 > 0 ...(33)

(3) Robustness:

For the robustness of limit cycle the H(jw) and
-1/N(X) should intersect perpendicularly. Thus the
robustness condition for limit cycle against the
uncertainties is

= 0 ...(34)

From Eq. (20), (23), (24), (34) and with do =0

-d2
2 + y = 0 ...(35)

According to these requirements the coefficient
of H(s) given in Eq. (20) can be calculated and with the
help of H(s) controller C(s) given in Eq. (18) can be
calculated.

Example (2)

Consider a system given by Fig. 8 where G(s)
and nonlinearity are same as in Example (1).

1
a

1
a

n1
a

n0
a( )

dR [H(jw)]
dw[ ] wd

Fig.8. Nonlinear system with nonlinearity in feed-forward path

Now let’s consider the following four parameter’s
perturbations.

Perturbation (1): –0.06s2 – 0.0002s – 0.004
numerator of G(s)

Perturbation (2): 0.006s +0.001 in the numerator
of G(s)

Perturbation (3): 0.02s2 + 0.009s in the
denominator of G(s)

Perturbation (4): 0.002s3 – 0.001s2 – 0.0001s
in the denominator of G(s)

Now the values of amplitude and frequency of limit
cycle with nominal plant are A0 = 2.31, w0= 0.278 rad/
sec and the intersection point of G(s) and -1/N(X) is (-
1.9,0). The percentage change of amplitude and
frequency when the perturbations are in additive form
can be seen in Table 3 and Fig.9 shows the simulation
results.

Table 3

Perturbation Amplitude Frequency % change % change
in in
Amplitude Frequency

Nominal 2.31 0.278 – –
Plant

(1) 2.52 0.267 +9.09 -3.95

(2) 2.43 0.295 +5.19 +6.11

(3) 2.62 0.327 +13.4 +17.6

(4) 2.74 0.256 +18.6 -7.91

Fig. 9. Limit cycles for the system given in Eq.14 with
additive perturbation given in Ex.2
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The percentage change of amplitude and frequency
when the perturbations are in multiplicative form can
be seen in Table 4 and Fig.10 shows the simulation
results.

Table 4

Perturbation Amplitude Frequency % change % change
in in
Amplitude Frequency

Nominal 2.31 0.278 – –
Plant

(1) 2.38 0.274 +3.03 -1.43

(2) 2.31 0.278 0 0

(3) 2.52 0.266 +9.09 -4.32

(4) Limit cycle disappear (unstable behavior)

Fig. 10. Limit cycles for the system given in Eq.14 with
multiplicative perturbation given in Ex.2

Now design a robust controller to get the desired
limit cycle characteristics which is

Xd = 1.5, wd = 0.5 rad/sec. According to the
desired characteristics the intersection point of H(s) and
-1/N(X) should be (-1.3078, 0).

After choosing the value of d2 = 1 with the help
of Eq. (23), (24), (25), (26) and (35) the H(s) can be
calculated which is

H(s) = ...(36)

Now using Eq. (18)

c(s) =

–1.3078s + 0.32695
s3 + s2 + 1.25s

[–1.3078s6 – 6.2905s5+1.1201s4–0.5774s3 0.1695s2–0.0032s + 0.0013]

[0.0241s6 + 0.6286s5 + 0.6731s4 + 0.8555s3 + 0.1096s2 + 0.0769s0]

To obtain the desired result a gain of 6 is also
added with C(s). Fig.11 shows the simulation model.
The Fig.12 and Fig.13 shows the simulation results with
additive and multiplicative perturbations after applying
the controller.

Fig. 11. Simulation model

Fig. 12. Limit cycles for the system given in Eq.14 with
additive perturbation given in Ex.2

Fig. 13. Limit cycles for the system given in Eq.14 with
multiplicative perturbation given in Ex.2

VIII. CONLUSION

In this paper attempt has been made to study the
stability and robustness of nonlinear systems in the
presence of uncertainty. Through describing function
method (DF), behavior of nonlinear system can be
analyzed when the nonlinearities are in different form.
A formula is given in this paper to determine the stability
of limit cycle. A designing procedure of a robust limit
cycle controller is also given in this paper which is based
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on describing function method. According to the
requirements loop shaping is done to get the desired
limit cycle characteristics. With the help of designed
loop transfer function the controller can be determined
which is robust against the parametric uncertainties.
The simulation results show that the controller designed
in this paper can be applied into nonlinear system
successfully.
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