
32

Service Evolution: A Literature
Survey

I. INTRODUCTION

A service is a loosely-coupled and platform-

independent business functionality which achieves a

specific business goal [1,2]. Service oriented

architecture is an architectural style which guides the

creation and usage of services. One of the important

aspects of SOA is that the implementation of a service

is independent of the interface which exposes the

functionalities which are provided by service provider.

Fig. 1 shows its architecture. Its major components

are service consumer, service provider and UDDI

registry.A service consumer invokes the service. AUDDI

(Universal Description, Discovery and Integration)

registry is a central repository based on XML which

enables a service provider to register and a service

consumer to locate web services. A service is expressed

using WSDL (Web service description language) which

is based on XML. It is used to describe the web service

including operations supported, messages needed for

communication, binding and address to which messages

should be sent. SOAP is the standard communication

protocol which has XML based format for the exchanged

messages between service provider and consumer.

These messages are generally sent via HTTP over

internet [1-4].

A service could be a composite service which is

also termed as a business process. Service composition

Rachna Kohar

Research Scholar,
JNU,NewDelhi

E-mail: rachnajnu@gmail.com

Abstract: In service oriented enterprises, functionalities are provided as self-

describing and platform independent services. A service combined with another

service, to deliver a larger functionality, is termed as business process. Services

undergo changes to adapt themselves to the growing market trends and

technologies. This paper presents a literature survey of the existing research

being carried out with respect to service evolution in service oriented

applications. We classify this research work in five areas: Change patterns in

services, Change proneness in services, Change in SOA artifacts, Change in

data in SOA and Service Composition Languages extensibilities. We present a

comprehensive study comprising of the change problems addressed, the

corresponding approaches used to handle them and the future work which

could be carried out in each category. This paper is an effort to survey those

research areas which are narrowly explored. Hence, this study provides the

areas for future work for those who have interest in service evolution.

Keywords: Service, Business process, Service evolution, Change.

is defined as the process of assembling the existing

services to make a composite service/business process.

It is usually meant for complex or large applications. It

can be achieved in two ways. One is orchestration in

which there is a central process which controls and

coordinates the services. The other one is choreography

in which there is no single process to control the flow

of messages between web services. It describes the

collaboration of services so as to achieve a common

business goal [2, 5-8].

In today’s competitive world, there is always a

pressure on the service provider to adapt to the changing

demands of the market. Therefore, service provider

tends to change his service. Evolution in terms of service

is the development of service and then updating it [9,10].

We classify the changes at three levels in SOA. These

Fig. 1: Service Oriented Architecture

UDDI Registry

Service

Consumer

Service

Provider

Finds Publish

Invokes

33MR International Journal of Engineering and Technology, Vol. 8, No. 1, June 2016

levels are: composition level, service level and data

definitions level. Fig. 2 depicts a scenario showing these

changes. As we know that a service is composed of

many services to achieve specific business functionality,

thus, the composite service comprises of many activities

to interact with them. These activities are send/receive/

assign etc. in BPEL notation and roleType/

participantType/informationType etc. in CDL program.

These activities may undergo changes such as addition/

deletion/modification. The BPEL/CDL program refers

WSDL document. A service interface is expressed as a

WSDL document which contains operations/messages

etc. These service interface elements may undergoes

changes like addition/deletion or modification. The

service interface uses data type definitions which are

expressed in XSD document or may be embedded in

the WSDL document itself. The XSD document contains

the data type’s definitions for the messages which are

present in WSDL document. These data type definitions

may also undergo changes. Figure 2 shows the deleted

activity/service/data type in dashed ellipse/rounded

rectangle and the added activity/service/data type in

thick-bordered ellipse/rounded rectangle [11-17].

The survey by Yi Wang and Ying Wang [18]

addresses the change management lifecycle in a service

based environment under four categories: service

adaptation, process flexibility, service evolution and

change analysis and management. The first category

signifies achieving interoperability among interacting

services and business protocols by mediating their

differences. It is based on the mismatch patterns among

services like signature mismatch, message order

mismatch. Under second category, extensions of BPEL

are studied. For e.g., VXBPEL deals with the variation

points and variants in BPEL, the extension AO4BPEL

provides notations in BPEL to specify data validation

and security as aspects. In the third category, web

service versioning management is studied which

includes monitoring of changes in service version and

notifying them to clients. The last category addresses

the change management lifecycle of a business process

which includes the study of impact of changes in a

private (BPEL) process of one partner on another

partner process, problem of managing running instances

of a web service when business protocol changes etc.

II. RESEARCHMETHOD

As the change management in SOA has vastly

emerged, our primary research question is: “What are

the areas in which there is scope for the researchers to

conduct research?” The primary question is divided into

four research questions (RQ) shown in Fig. 3.

BPEL/CDL Program WSDL Interface Descriptions XSD Definitions

Fig. 2: Example Scenario for Changes in Services

Activity

WS 1

Activity

Activity 3

Activity 4

WS 2

WS 3

PortTypes

Operations

Messages

Types

PortTypes

Operations

Messages

Types

PortTypes

Operations

Messages

Types

Types

Attributes

Types

Attributes

XSD 1

XSD2

XSD3
Types

Attributes

34

We present our study for these RQs under below

areas.

Change patterns in services: In this area, we focus

on the study of the research done by different authors

for change patterns in services. Our study covers

different kinds of patterns for a service such as Split-

Map and Merge-Map and for a business processes such

as Activity Merge/Change and Activity Extend/Delete.

Change proneness in services: Under this area, we

present the work done in identifying change proneness

in services. Authors predict change proneness of

services via change indicators like coupling, cohesion

or data type complexity. As per our analysis, we find

this area as a wide scope of research for the researchers

to explore.

Change in data and SOA: Services in SOA uses

many service which in turn uses heterogeneous data.

This area covers the study of changes and their handling

in the data used by services.

Change in SOA artifacts:Various mechanisms have

been developed to handle the changes in SOA artifacts

like additions or deletions in artifacts such as BPEL

program code or WSDL interface descriptions.

Service Composition Languages extensibilities:

This area comprises of the literature work for WS-BPEL

(a business process language) and WS-CDL (a

choreography language) extensions which enhance the

capabilities of BPEL.

We have considered four electronics databases as

the primary sources for our literature study. These are

listed in below Table 1.

Table 1: List of sources

Database URL

1 IEEE http://ieeexplore.ieee.org/

2 Springer http://link.springer.com/

3 ACM SIGMOD http://www.sigmod.org/

4 Research Gate http://www.researchgate.net//

This paper is organized in three sections. In section

2, we present our research method. In section 3, we

present our classification of the research in change

management in SOA in detail. In Section 4, we conclude

the paper.

III. CATEGORIES IN CONTEXTOF SERVICE

CHANGES

This section discusses the work done in context

of changes in services. Firstly we review the work done

to address different types of dependencies among

services. We discuss the change patterns and change

proneness in service. Then we focus on the work that

is related with managing changes in database in service

oriented environment. Finally, we review extensions of

BPEL that are not covered in the referred survey paper.

Fig. 3: Research Questions

Service evolution
questions???

What could
be the change
patterns that
emerge while

service
evolution?

How can
we identify
whether a
service will
change in
future?

How changes
in the different
data sources in
SOA paradigm

could be
handled?

Why and
How

changes
in SOA

artifacts are
handled

What could
be the
possible

extensions to
composition
languages?

35MR International Journal of Engineering and Technology, Vol. 8, No. 1, June 2016

A. Change Patterns in Services

In this section, we discuss the existing research

work on change patterns in service based applications.

Firstly, we discuss the work done on finding the change

patterns in a single service [19,48]. Next, we discuss

the research on change patterns in a composite service

(business process) [21]. Lastly, we discuss the work

done by various authors to determine the patterns of

changes in services at the architecture level [22,23].

A service go through various types of changes

like addition, deletion etc. forming certain patterns.

Service evolution patterns [19] are the reusable strategies

for the services to resolve the issues while it goes

through evolution and to estimate the impact of changes

on service consumers. This is achieved after

understanding the patterns which arise while changes

are done in service. This is done with the help of a

service evolution model which uses the concept of

service dependency on consumers. Based on the analysis

of these dependencies among service and consumer,

the service evolution patterns are proposed. The

proposed patterns are: compatibility, transition, split-

map and merge-map. The first pattern showcases that

for changes, some service consumers are compatible

and some are not. The second pattern helps the service

consumer for smooth transition to the changed service.

Third pattern is concerned with the frequency of changes

that are applied on operations of services. This assists

to split more frequent operations form the less-frequent

operations. The last pattern is helpful in determining

the services which have common operations to enable

merging between the services.

Now, we discuss the work done for the change

patterns in business processes. As we know that a

business process or a composite service comprises of

many activities such as control flow, sequence etc.

which can be changed. For example, an activity ‘A’ split

into multiple activities ‘A1’, ‘A2’ … and ‘Am’ that are

to be executed in parallel. The process change patterns

are activity split/change, activity merge/change and

activity extend/delete [20]. A process designer for BPEL

is developed to provide templates which supports

process change patterns. These patterns are applied by

user via the process designer wizard without re-

designing the process model manually. This helps to

identify which version of the process should be selected

and executed at run time using abstract process

execution.

Change patterns in architecture-centric evolution

for services in SOA are proposed for re-use [21,22].The

sequential architectural changes are analyzed from the

architecture change logs to identify patterns. Based on

these, pattern-based evolution model is proposed by the

author is 4-tuple PatEvol =<SArch,OPR,CNS,PAT>,

where SArch is the architecture element to which a

change pattern can be applied , OPR refers to change

operator, CNS refer to a set of pattern specific

constraints and PAT represents a recurring composition

of change operationalization on architecture elements.

This model helps the architects for reuse in architecture-

centric evolution of services.

B. Change Proneness in Services

The research work which has been done in

identifying the change proneness of a service, by

different authors, is discussed here. As the service

evolves from time to time, there is a need to determine

the quality and stability of the service. The service

provider does not know in advance the impact of

changes on the service consumers which makes the

authors feel the necessity to determine change proneness

of a service [47]. This research helps the developers to

design the service towards more stability and quality.

In [23], indicators of change such as heuristics,

anti-patterns, cohesion, metrics etc. are proposed to

predict the change prone Java APIs. Based on these

indicators, Java APIs are classified into more change-

prone and less change-prone. The research is intended

to extend to investigate the change proneness of service

interfaces, by taking the work done for java APIs as the

base because service interfaces are mapped to these

APIs. The change-proneness of a WSDL interface is

identified using metrics i.e. Cohesion metrics: Service

Interface Data Cohesion metric, Data Type Cohesion

metric and Data Type Complexity: Complexity Based

Types metric, in [24].The metrics are empirically

calculated for the fine grained changes between

subsequent versions of real time services. Using this

info, service developers are assisted to develop less

change-prone interfaces for a service. It has been

concluded that increased complexity and less cohesion

leads to more change-prone interfaces.

36

In [25], the impact of service patterns and anti-

patterns on the maintenance and evolution of service

based systems is studied. As specified by the author,

the frequently changed services face some recurring

design problems during the maintenance process. While

proposing solutions, some bad practice solutions known

as anti-patterns in service based systems come into

picture. For e.g., bloated service which has operations

that are less cohesive in nature and are less reusable

and incur high maintenance cost. Metrics such as

number of changes and size of changes (i.e., code

churns) performed by developers, are used to measure

the change-proneness of a service. The observation by

the author states that the metrics values involved in a

service pattern is less than the metrics value in the service

anti-pattern. Thus, services containing a high number

of antipatterns (respectively patterns) are likely to change

more.

From the above discussion, we come to know that

the current research in this area is very limited. There

is much scope for more research. The work done so

far in this area does not comprise of coupling metrics,

granularity and reusability metrics etc. that may result

in predicting the change proneness of services. In

addition, the type of changes i.e. functional or non-

functional can be considered to have a more

comprehensive prediction.

C. Change in Data/Database in SOA

SOA combines business data and process to

develop services. The two areas data and SOA are related

to each other [26,27]. The data-oriented SOA aims to

remove the complexities in accessing heterogeneous data

for different services. This arises the need to emerge

data services for centralized and consistent view of data

and also to resolve data issues like management, quality

and movement of data among services [28,29].

In this section, we shall discuss about the research

work which has been done for the detection and handling

of changes in data and databases in a SOA paradigm.

As the database systems evolved, the need to

incorporate the service concepts also arose. In [30,31],

an architecture called Service Oriented Database

Architecture (SODA) is described which was developed

for SQL Server. It contains SOA features built in the

database engine. SODA consists of many features and

the one which is related to the data changes is a feature

of change notifications in the database in a SOA

paradigm. The service and data logic can be on a single

machine or can be on different machines. Whenever a

change in data occurs, that change should be propagated

to the client who is accessing the data. SODA has an

integrated database change notifications (DCN) feature

that notifies the client when a change occurs in the

underlying database.

A composite service comprises of many

component services and each of these may require data

from different data sources. To handle the heterogeneous

data, Service Data Object (SDO) is used [32].A SDO

contains three concepts: Data Object (DO), Data Graph

and Data Access Service (DAS). DO is nothing but data

(business). Data Access Service (DAS) layer provides

access to data source and creates data graph. The

changes in data are depicted in data graph. DAS applies

changes in data graphs whenever data in data sources

changes.

We observed that in the above discussion, very

little research is done so far which is related to data in

service oriented systems. More techniques can be used

to explore the change management of data in service

based systems.

D. Changes in SOA Artifacts

In this section, we discuss that how changes in

different service artifacts are handled in SOA.

In [33], service design process is shown which

comprises of many stages such as business

componentization (business objectives are set), service

discovery (suitable service as per business objectives

are discovered) etc. At each stage, artifacts are

maintained. Few examples of artifacts are business goal,

service specification, metrics, KPI etc. Changes at any

stage of service design process may affects related

artifacts of other stages. This may result in any of the

three changes in artifacts: addition/deletion/modification

of artifact. These changes are analyzed and propagation

analysis is done for the artifacts which impacts other

related artifacts.

The service artifacts are classified in [34] as design

artifacts like use-case and sequence diagrams and code

level artifacts like BPEL Code, configuration files etc.

37MR International Journal of Engineering and Technology, Vol. 8, No. 1, June 2016

The changes in artifacts at one level affects artifacts at

another level in a SOA based solution. The author has

developed a framework Morpheus to model semantics

based change relationships between artifacts at different

levels.

BPEL program code, WSDL service interface

descriptions and XSD data type definitions are the main

service artifacts [35]. The SOA applications are

heterogeneous in nature and thus, the maintenance may

require expert knowledge to coordinate changes. The

BPEL program references WSDL service interface

descriptions and XSD data type definitions which in

turn uses XSD data type definitions. The correct

understanding of the dependencies between these

artifacts is required for a maintainer to incorporate

change effectively. This is done using rule based system

which uses expert reasoning on these artifacts.

E. Service Composition Languages Extensibilities

BPEL is a standard language to orchestrate partner

services to form a service composition i.e. business

process. To increase the flexibility of business processes

to adapt to various concepts, extensions of BPEL are

introduced. We now discuss the extensions of BPEL.

In [36] BPELCHor is introduced, an extension to BPEL,

which describes the choreography using BPEL notations.

The extension basically includes participant behavior

descriptions which define the control flow dependencies

between activities and participant topology which

defines structural aspects of choreography by specifying

participant types, participant references, and message

links. BPEL has limited reusability for the processes due

to the strong coupling between WSDL interfaces and

BPEL. Thus, the BPELLight was proposed in [37] to

develop WSDL-Less BPEL i.e. describes the interaction

between two partners without dependency on WSDL.

This enables BPEL to define interfaces of service using

any Interface Definition Language (IDL).

BPEL4People[38] introduces information about users

who participates in process, in addition to information

such as variables and partner links in BPEL process. It

helps to identify the different ways that people interact

with processes and how the process identifies the people

to interact with. The people activity, like other BPEL

activities, has a name, input and output to specify the

data exchanged with the task. BPEL for interoperable

pervasive computing is developed by the author in[39].

It allows users in wired computing settings to model

the applications used in the networks but is not capable

to model dynamic wireless networks. A lightweight

BPELEngine, Silver, is developed for the mobile devices.

WS-CDL is used to describe the choreography of

services i.e. sequence of interactions between services

[43-46,49-50]. There are various extensions which have

been proposed for WS-CDL so that it can be made

flexible to incorporate more features. We now discuss

the extensions of WS-CDL. CDLExt is a model extension

of WS-CDL which is proposed in [40]. The main

purpose of the extension is to manage the service layer

including the dependencies among services and IT

artifacts such as business, database etc., managing the

non-functional attributes of a service etc.. This helps

the architects to decide whether the service with given

parameters would deliver under a specific contract. [41]

extends WS-CDL to make the sub choreography

elements such Exception, variable etc. within the main

choreography element reusable. This is achieved by

making choreography templates to make them reusable.

The reusability feature makes the interaction patterns

of services available a generic entity in a composition.

[42] provides an approach to build QoS aware service

based processes. The choreography of services are

annotated with SLA references because typically non-

functional requirements are described using SLAs among

the interacting services.

IV. CONCLUSIONS

This paper provides a more comprehensive review

of the research work that is being carried related to

changes in SOA. Firstly, we have presented a summary

of the literature which is covered in the survey by Yi

Wang et al. Then, we have classified the research work

done in change management under five areas: Change

patterns in services, Change proneness in services,

Change in SOA artifacts, Change in data in SOA and

Service Composition Languages extensibilities. We have

discussed the work done in the research and also figured

out the issues that are still open and remain unexplored

in each of the category.

Fig. 4 shows the percentage of research, as per

our study, that has been carried out in each of the five

areas of the existing research. We can see that ,relatively,

last area which is “Service Composition Languages

38

extensibilities “ as depicted in the pie chart is the most

explored area by researchers as compared to other areas

of the research in this paper.

The amount of research that has been conducted

in the five areas over the last 15 years is displayed in

Fig. 5. The chart display that the second area “Change

proneness in services “ has been explored in the recent

years which is sign that there is a wide area of scope

for research in this area. Another area which is very

less explored in the recent years is the third area i.e.

“Change in SOA artifacts”.

[4] Erl, Thomas. Service-oriented architecture: a field guide to

integrating XML and web services. Prentice Hall PTR,

2004.

[5] Krafzig, Dirk, Karl Banke, and Dirk Slama. Enterprise SOA:

service-oriented architecture best practices. Prentice Hall

Professional, 2005.

[6] Laskey, Kathryn B., and Kenneth Laskey. “Service oriented

architecture.” Wiley Interdisciplinary Reviews:

Computational Statistics 1.1 (2009): 101-105.

[7] Natis, Yefim V. “Service-oriented architecture scenario.”

(2003).

[8] Channabasavaiah, Kishore, Kerrie Holley, and Edward

Tuggle. “Migrating to a service-oriented architecture.” IBM

DeveloperWorks 16 (2003).

[9] Papazoglou, Mike P. “The challenges of service evolution.”

Advanced Information Systems Engineering. Springer Berlin

Heidelberg, 2008.

[10] Andrikopoulos, Vasilios, Salima Benbernou, and Michael

P. Papazoglou. “On the evolution of services.” Software

Engineering, IEEE Transactions on 38.3 (2012): 609-628.

[11] Akram, Salman, et al. “A change management framework

for service oriented enterprises.” International Journal of

Next-Generation Computing 1.1 (2010).

[12] Wang, Yi, et al. “Change impact analysis in service-based

business processes.” Service Oriented Computing and

Applications 6.2 (2012): 131-149.

[13] Romano, Daniele, and Martin Pinzger. “Analyzing the

evolution of web services using fine-grained changes.” Web

Services (ICWS), 2012 IEEE 19th International Conference

on. IEEE, 2012.

[14] Ginige, Jeewani, Uma Sirinivasan, and Athula Ginige. “A

mechanism for efficient management of changes in BPEL

based business processes: an algebraic methodology.” e-

Business Engineering, 2006. ICEBE’06. IEEE International

Conference on. IEEE, 2006.

[15] Akram, Mohammad Salman, BrahimMedjahed, andAthman

Bouguettaya. “Supporting dynamic changes in web service

environments.” Service-Oriented Computing-ICSOC 2003.

Springer Berlin Heidelberg, 2003. 319-334.

[16] Papazoglou, Michael P., et al. “Service-oriented computing:

State of the art and research challenges.” Computer 11

(2007): 38-45.

[17] Papazoglou, Michael P., et al. “Service-oriented computing:

a research roadmap.” International Journal of Cooperative

Information Systems 17.02 (2008): 223-255.

[18] Yi Wang, Ying Wang, A survey of change management in

service oriented environments,: In Service Oriented

Computing and Applications-Springer (2013), 259-273.

[19] Wang, Shuying, et al. “Service Evolution Patterns.” Web

Services (ICWS), 2014 IEEE International Conference on.

IEEE, 2014.

Fig. 4: Amount of research work done in areas

0

1

2

3

4

5

6

2000-2005 2005-2010 2010-2015

Change patterns in

services

Change proneness in

services

Change in data in SOA

Fig. 5: Analysis of research carried in areas over years

REFERENCES

[1] Erl, Thomas. Service-oriented architecture: concepts,

technology, and design. Pearson Education India, 2005.

[2] Papazoglou, Mike P. “Service-oriented computing:

Concepts, characteristics and directions.” Web Information

Systems Engineering, 2003. WISE 2003. Proceedings of

the Fourth International Conference on. IEEE, 2003.

[3] Perrey, Randall, and Mark Lycett. “Service-oriented

architecture.” Applications and the Internet Workshops,

2003. Proceedings. 2003 Symposium on. IEEE, 2003.

39MR International Journal of Engineering and Technology, Vol. 8, No. 1, June 2016

[20] Kim, Dongsoo, Minsoo Kim, and Hoontae Kim. “Dynamic

business process management based on process change

patterns.” Convergence Information Technology, 2007.

International Conference on. IEEE, 2007.

[21] Ahmad, Aakash, Pooyan Jamshidi, and Claus Pahl.

“Pattern-driven reuse in architecture-centric evolution for

service software.” (2012).

[22] Ahmad,Aakash, Pooyan Jamshidi, and Claus Pahl. “Graph-

based pattern identification from architecture change logs.”

Advanced Information Systems Engineering Workshops.

Springer Berlin Heidelberg, 2012.

[23] Palma, Francis, et al. “Investigating the Change-Proneness

of Service Patterns and Antipatterns.” Service-Oriented

Computing and Applications (SOCA), 2014 IEEE 7th

International Conference on. IEEE, 2014.

[24] Kalouda, M. Analyzing the Evolution of WSDL Interfaces

using Metrics. Diss. TU Delft, Delft University of

Technology, 2013.

[25] Romano, Daniele. “Analyzing the change-proneness of

service-oriented systems from an industrial perspective.”

Proceedings of the 2013 International Conference on

Software Engineering. IEEE Press, 2013.

[26] Linthicum, David S., Defining, Designing, and

Implementing SOA-Based Data Services.

[27] Data Integration in a Service-Oriented Architecture,White

Paper, Informatica, 2005

[28] Lawson, J. “Data services in SOA: maximizing the Benefits

in enterprise architecture.” Oracle,[Online] April (2009).

[29] Mínguez, Jorge, et al. “A SOA-based approach for the

integration of a data propagation system.” Information

Reuse & Integration, 2009. IRI’09. IEEE International

Conference on. IEEE, 2009.

[30] Campbell, David. “Service Oriented Database Architecture:

App Server-Lite?.”Proceedings of the 2005 ACM

SIGMOD international conference on Management of Data.

ACM, 2005.

[31] Tok, Wee Hyong, and Stephane Bressan. “DBNet:A service-

oriented database architecture.” Database and Expert

Systems Applications, 2006. DEXA’06. 17th International

Workshop on. IEEE, 2006.

[32] Resende, Luciano. “Handling heterogeneous data sources

in a SOA environment with service data objects (SDO).”

Proceedings of the 2007 ACM SIGMOD international

conference on Management of data. ACM, 2007.

[33] Zhang, Liang-Jie, et al. “Variation-oriented analysis for

SOA solution design.”Services Computing, 2007. SCC

2007. IEEE International Conference on. IEEE, 2007.

[34] Ravichandar, Ramya, et al. “Morpheus: Semantics-based

incremental change propagation in soa-based solutions.”

Services Computing, 2008. SCC’08. IEEE International

Conference on. Vol. 1. IEEE, 2008.

[35] Goehring, George, et al. “A Knowledge-Based System

Approach for Extracting Abstractions from Service

Oriented Architecture Artifacts.” International Journal of

Advanced Research in Artificial Intelligence 2.3 (2013):

44-52.

[36] Decker, Gero, et al. “BPEL4Chor: Extending BPEL for

modeling choreographies.”Web Services, 2007. ICWS 2007.

IEEE International Conference on. IEEE, 2007.

[37] Nitzsche, Jörg, et al. “BPELlight.” Business process

management. Springer Berlin Heidelberg, 2007. 214-229.

[38] Kloppmann, Matthias, et al. “Ws-bpel extension for

people–bpel4people.” Joint white paper, IBM and SAP

183 (2005): 184.

[39] Hackmann, Gregory, Christopher Gill, and Gruia-Catalin

Roman. “Extending BPEL for interoperable pervasive

computing.” Pervasive Services, IEEE International

Conference on. IEEE, 2007.

[40] Dusza, Konrad, and Henryk Krawczyk. “Managing

distributed architecture with extended WS-CDL.” Parallel

Processing and Applied Mathematics. Springer Berlin

Heidelberg, 2008. 281-290.

[41] Mardukhi, Farhad, Naser NematBaksh, and Kamran

Zamanifar. “EXTENDING WS-CDL TO SUPPORT

REUSABILITY.” International Journal on Web Service

Computing 2.1 (2011).

[42] Rosenberg, Florian, et al. “Integrating quality of service

aspects in top-down business process development using

WS-CDL and WS-BPEL.” Enterprise Distributed Object

Computing Conference, 2007. EDOC 2007. 11th IEEE

International. IEEE, 2007.

[43] http://www.w3.org/TR/ws-cdl-10/

[44] Fredlund, Lars. “Implementing ws-cdl.” Proceedings of the

second Spanish workshop on Web Technologies (JSWEB

2006). 2006.

[45] Weerawarana, Sanjiva, et al. Web services platform

architecture: SOAP, WSDL, WS-policy, WS-addressing,

WS-BPEL, WS-reliable messaging and more. Prentice Hall

PTR, 2005.

[46] Mendling, Jan, and Michael Hafner. “From WS-CDL

choreography to BPEL process orchestration.” Journal of

Enterprise Information Management 21.5 (2008): 525-542.

[47] Bieman, James M., et al. “Design patterns and change

proneness: An examination of five evolving

systems.” Software metrics symposium, 2003.

Proceedings. Ninth international. IEEE, 2003.

[48] Weber, Barbara, Stefanie Rinderle, and Manfred Reichert.

“Change patterns and change support features in process-

aware information systems.” Advanced Information

Systems Engineering. Springer Berlin Heidelberg, 2007.

[49] Acharya, Amit, et al. Patterns: Implementing an SOAusing

an enterprise service bus. IBM, International Technical

Support Organization, 2004.

[50] Newcomer, Eric, and Greg Lomow. Understanding SOA

with Web services. Addison-Wesley, 2005.


