A Review on Performance Improvement and Power Optimization in Cooperative FSO Networks

Issue: Vol.7 No.2

Authors:

Deepti Agarwal (Indira Gandhi Delhi Technical University for Women, Delhi)

Ankur Bansal (Netaji Subhas Institute of Technology, Delhi)

Neha Singhal (Indira Gandhi Delhi Technical University for Women, Delhi)

Ashwni Kumar (Indira Gandhi Delhi Technical University for Women, Delhi)

Keywords: Free space optics, fading, cooperative system, atmospheric turbulence, power optimization.

Abstract: 

This paper reviews cooperative communication as a powerful solution for combating atmospheric turbulence induced fading. The various relaying techniques and cooperative strategies proposed in the recent times have been discussed, compared and analyzed in the context of performance improvement. The paper also discusses power optimization techniques as an efficient tool to maximize the overall capacity of the relay assisted networks. The paper provides the reader a wide range, informative view of the work done in the area of cooperative free space optical (FSO) networks.

References:

 

[1] D. Killinger, “Free space optics for laser communication through the air,” Optics & Photonics News, vol. 13, pp. 36-42, Oct. 2002.

[2] M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between electrical and optical interconnect based on power and speed consideration,” Applied. Optics, vol. 27, no. 9, pp. 1742-1751, Sept. 1998.

[3] F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Applied Optics, vol. 47, no. 2, pp. 277-283, Jan. 2008.

[4] H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication:Potential and state-of-the[1]art,” IEEE Communications Magazine, vol. 49, no. 9, pp. 56-62, Sept. 2011.

[5] V. W. S. Chan, “Optical satellite networks,” IEEE/OSA Journal of Lightwave Technology, vol. 21, no. 11, pp. 2811-2827, Nov. 2003.

[6] X. Zhu and J. Kahn, “Free-space optical communication through atmosphericturbulence channels,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1293-1300, Aug. 2002.

[7] D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. Mag., vol. 42, no. 5, pp. s2-s7, May. 2004

[8] V. W. S. Chan, “Free-space optical communications,” IEEE/OSA Journal of Lightwave Technology, vol. 24, no. 12, pp. 4750-4762, Dec.2006.

[9] C. C. Davis, I. I. Smolyaninov, and S. D. Milner, “Flexible optical wireless links and networks,” IEEE Communications Magazine, vol. 41, pp. 51-57, March. 2003.

[10] D. C. O’Brien, S. Quasem, S. Zikic, and G. E. Faulkner, “Multipleinput multiple output systems for optical wireless: challenges and possibilities,” Proceedings of SPIE, Free-Space Laser Communications VI, vol. 6304, Aug. 2006, San Diego, CA.

[11] L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash,“Theory of optical scintillation, ”Journal of Optical Society of America (JOSA) A, vol. 16, no. 6, pp. 1417-1429, June. 1999.

[12] L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, SPIE Press, 2nd edition, 2005.

[13] G. Proakis and M. Salehi, Digital communications, McGraw-Hill, 5th edition, New York, 2008.

[14] W. O. Popoola, “Subcarrier intensity modulated free[1]space optical communication system,” Ph.D. dissertation, School Comput., Eng. Inf. Sci.,Univ. Northumbria, Newcastle upon Tyn, U.K., Sep., 2009.

[15] S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Freespace optical MIMO transmission with Q-ary PPM,” IEEE Transactions on Communications, vol. 53, no. 8, pp. 1402-1412, Aug. 2005.

[16] S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2813-2819, Aug. 2007

[17] M. K. Simon and M.S. Alouini, Digital communication over fading channels, John Wiley & Sons, 2nd edition, New York, 2005.

[18] H. Tapse and D. K. Borah, “Hybrid optical=RF channels: characterization and performance study using low density parity check codes,”IEEE Transactions on Communications, vol. 57, no. 11, pp. 3288-3297,Nov. 2009.

[19] N. D. Chatzidiamantis, M. Uysal, T. A. Tsiftsis and G. K. Karagiannidis,“Iterative near maximum-likelihood sequence detection for MIMO optical wireless systems,” IEEE/OSA Journal of Lightwave Technology, vol. 28, no. 7, pp. 1064-1070, Apr. 2010.

[20] T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal,“Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Transactions on Wireless Communications, vol. 8, no. 2, pp. 951-957, Feb. 2009.

[21] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview of MIMO communications: a key to gigabit wireless,” Proceedings of the IEEE, vol. 92, no. 2, pp. 198-218, Feb. 2004.

[22] C. Abou-Rjeily and S. Haddad, “Cooperative FSO systems: Performance analysis and optimal power allocation,” J. Lightw. Technol., vol. 29, no. 7, pp. 1058-1065, Apr. 2011.

[23] Z. Ghassemlooy and W. O. Popoola, Mobile and Wireless Communications Network Layer and Circuit Level Design, chapter Terrestrial Free-Space Optical Communications, pp. 355-392, InTech, Jan. 2010.

[24] Y. Han and G. Li, “Theoretical sensitivity of direct[1]detection multilevel modulation formats for high spectral efficiency optical communications,” IEEE Journal on Selected Topics on Quantum Electronics, vol.12, no. 4, pp. 571-580, July. 2006.

[25] W. O. Popoola, “Subcarrier intensity modulated free[1]space optical communication system,” Ph.D. dissertation, School Comput., Eng. Inf. Sci.,Univ. Northumbria, Newcastle upon Tyn, U.K., Sep., 2009.

[26] J. H. Churnside and R. G. Frehlich, “Experimental evaluation of lognormally modulated Rician and I-K models of optical scintillation in the atmosphere,” Journal of Optical Society of America (JOSA) A, vol.6, no. 11, pp. 1760-1766, Nov. 1989.

[27] F. E. Goodwin, “A review of operational laser communication systems,” Proceedings of the IEEE, vol. 58, no. 10, pp. 1746-1752, Oct. 1970.

[28] E. Jakeman and P. Pusey, “Significance of K distributions in scattering experiments, ”Physical Review Letters, vol. 40, pp. 546-550, Feb. 1978.

[29] N. D. Chatzidiamantis, H. G. Sandalidis, G. K. Karagiannidis, S. A. Kotsopoulos, and M. Matthaiou, “New results on turbulence modeling for free-space optical systems,” IEEE International Conference on Telecommunications (ICT), pp. 487-492, Apr. 2010, Doha, Qatar.

[30] A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “General analytical expressions for the bit error rate of atmospheric optical communication systems,” Optics Letters, vol. 36, no. 20, pp. 4095-4097, Oct. 2011.

[31] A. Farid, S. Hranilovic, “Outage Capacity Optimization for Free-Space Optical Links With Pointing Errors,” J. Lightw. Technol., vol. 25, no. 7, pp.1702-1710, July. 2007.

[32] A. Acampora and S. Krishnamurthy, “A broadband wireless access network based on mesh-connected free-space optical links,” IEEE Personal Communications, vol. 6, no. 10, pp. 62-65, Oct. 1999.

[33] E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,”IEEE Transactions on Communications, vol. 57, no. 11, pp. 3415-3424, Nov. 2009.

[34] T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and N.C. Sagias, “Multihop free-space optical communications over strong turbulence channels,” International Conference on Communications (ICC), vol. 6, pp. 2755-2759, June. 2006, Istanbul, Turkey.

[35] M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Transactions on Wireless Communications, vol. 7, no.12, pp. 5441- 5449, Dec. 2008.

[36] M. A. Kashani, M. Safari, and M. Uysal, “Optimal relay placement and diversity analysis of relay[1]assisted free-space optical communication systems,” IEEE/OSA Journal of Optical communications and Networking, vol. 5, no. 1, pp. 37-47, Jan. 2013.

[37] C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA Journal of Optical Communications and Networking, vol. 2, no. 8, pp. 576-586, Aug. 2010.

[38] C. Abou-Rjeily , “All-Active and Selective FSO Relaying: Do We Need Inter-Relay cooperation? ,” Journal of lightwave technology, vol. 32, no. 10, pp.1899-1906, May. 2014 .

[39] C. Abou-Rjeily and S. Haddad, “Inter-Relay Cooperation: A New Paradigm for Enhanced Relay[1]Assisted FSO Communications,” IEEE Trans. Commun., vol. 62, no. 6, pp. 1970-1982, June. 2014.

[40] G. Karagiannidis, T. Tsiftsis, and H. Sandalidis, “Outage probability of relayed free space optical communication systems,” Electronics Letters, vol. 42, no. 17, pp. 994-996, Aug. 2006.

[41] K. P. Peppas, A. N. Stassinakis, H. E. Nistazakis, and G. S. Tombras,“Capacity analysis of dual amplify-and[1]forward relayed freespace optical communication systems over turbulence channels with pointing errors,” IEEE/OSA Journal of Optical Communications and Networking, vol. 5, no. 9, pp. 1032-1042, Sept. 2013.

[42] M. R. Bhatnagar, “Average BER analysis of differential modulation in DF cooperative communication system over gamma-gamma fading FSO links,” IEEE Commun. Lett., vol. 16, no. 8, pp. 1228-1231, Aug. 2012.

[43] S. Aghajanzadeh and M. Uysal, “Outage performance and DMT analysis of DF parallel relaying in FSO IM/ DD communications,” in Proc. IEEE Veh. Technol. Conf., 2012, pp. 1-5.

[44] M. Karimi and N. Nasiri-Kenari, “BER analysis of cooperative systems in free-space optical networks,” IEEE=OSA Journal of Lightwave Technology, vol. 27, no. 12, pp. 5639-5647, Dec. 2009.

[45] M. Bhatnagar, “Performance analysis of decode-and[1]forward relaying in gamma-gamma fading channels,” IEEE Photonics Technology Letters, vol. 24, no. 7, pp. 545 -547, Apr. 2012.

[46] N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K.Karagiannidis, and R. Schober, “Relay selection protocols for relayassisted free-space optical systems,” IEEE/OSA Journal of Optical Communications and Networking, vol. 5, no. 1, pp. 92-103, Jan. 2013.

[47] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fading channels,” IEEE Trans. Inf. Theory, vol. 45, pp. 1468-1489, July. 1999.

[48] A. Mercado and B. Azimi-Sadjadi, “Power efficient link for multihop wireless network,” in Proc. 41st Allerton Conf. Commun., Control, Comput., Monticello, IL, Oct. 1-3, 2003, pp. 1837-1847.

[49] M. O. Hasna and M. Alouini, “Optimum power allocation for relayed transmissions over Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1999-2004, Nov. 2004.

[50] Y. Zhao, R. Adve, and T. J. Lim, “Improving amplify[1]and-forward relay network: Optimum power allocation versus selection, ”IEEE Trans. WirelessCommun., vol. 6, no. 8, pp. 3114-3123, Aug. 2007.

[51] K. T. Phan, T. Le-Ngoc, S. A. Vorobyov, and C. Tellambura, “Power allocation in wireless multi-user relay network,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2535-2545, May. 2009.

[52] P. Gong, P. Xue, D. Park and D. K. Kim, “Optimum power allocation in a nonorthogonal amplify-and[1]forward relay- assisted network,” IEEE Trans. on Vehicular Technology ,vol.60, pp. 890-900, March. 2011.